Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(7): e2205254, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504447

RESUMO

Block copolymer (BCP) self-assembly in thin films is an elegant method to generate nanometric features with tunable geometrical configurations. By combining directed assembly and hybridization methods, advances in nano-manufacturing have been attested over the past decades with flagship applications in lithography and optics. Nevertheless, the range of geometrical configurations is limited by the accessible morphologies inherent to the energy minimization process involved in BCP self-assembly. Layering of nanostructured BCP thin films has been recently proposed in order to enrich the span of nanostructures derived from BCP self-assembly with the formation of non-native heterostructures such as double-layered arrays of nanowires or dots-on-line and dots-in-hole hierarchical structures. In this work, the layer-by-layer method is further exploited for the generation of nano-mesh arrays using nanostructured BCP thin films. In particular, a subtle combination of chemical and topographical fields is leveraged in order to demonstrate design rules for the controlled registration of a BCP layer on top of an underneath immobilized one by the precise tuning of the interfacial chemical field between the two BCP layers.

2.
J Colloid Interface Sci ; 609: 375-383, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902674

RESUMO

Producing ultrathin light absorber layers is attractive towards the integration of lightweight planar components in electronic, photonic, and sensor devices. In this work, we report the experimental demonstration of a thin gold (Au) metallic metasurface with near-perfect visible absorption (∼95 %). Au nanoresonators possessing heights from 5 - 15 nm with sub-50 nm diameters were engineered by block copolymer (BCP) templating. The Au nanoresonators were fabricated on an alumina (Al2O3) spacer layer and a reflecting Au mirror, in a film-coupled nanoparticle design. The BCP nanopatterning strategy to produce desired heights of Au nanoresonators was tailored to achieve near-perfect absorption at ≈ 600 nm. The experimental insight described in this work is a step forward towards realizing large area flat optics applications derived from subwavelength-thin metasurfaces.

3.
ACS Macro Lett ; 8(8): 923-930, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35619498

RESUMO

The combination of the nonsolvent-induced phase separation (NIPS) process with a solvent vapor annealing (SVA) treatment is used to produce asymmetric and hydrophobic thick films having different long-range ordered network nanostructures, which are inaccessible via currently available membrane fabrication methods. We show that the disordered phase generated by NIPS on the material top surface can be transformed into a highly ordered bicontinuous network nanostructure during the SVA process without disrupting the substructure morphology. For instance, by using a straightforward blending approach, either a triply periodic alternating diamond (DA) structure or a core-shell perforated lamellar (PL) phase was demonstrated on the skin layer of fully hydrophobic poly(1,1-dimethyl silacyclobutane)-block-polystyrene-block-poly(methyl methacrylate) (PDMSB-b-PS-b-PMMA) thick films. Such a material fabrication method, enabling the formation of a sponge-like substructure topped by a network phase having an excellent long-range order, provides an appealing strategy to facilitate the manufacture of next-generation membranes at large scale since these bicontinuous morphologies obviate the need of the nanochannel alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA