Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; 20(4): e2306270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702136

RESUMO

Persistent and uncontrolled inflammation is the root cause of various debilitating diseases. Given that interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical modulator of inflammation, inhibition of its activity with selective drug molecules (IRAK4 inhibitors) represents a promising therapeutic strategy for inflammatory disorders. To exploit the full potential of this treatment approach, drug carriers for efficient delivery of IRAK4 inhibitors to inflamed tissues are essential. Herein, the first nanoparticle-based platform for the targeted systemic delivery of a clinically tested IRAK4 inhibitor, PF-06650833, with limited aqueous solubility (57 µg mL-1 ) is presented. The developed nanocarriers increase the intrinsic aqueous dispersibility of this IRAK4 inhibitor by 40 times. A targeting peptide on the surface of nanocarriers significantly enhances their accumulation after intravenous injection in inflamed tissues of mice with induced paw edema and ulcerative colitis when compared to non-targeted counterparts. The delivered IRAK4 inhibitor markedly abates inflammation and dramatically suppresses paw edema, mitigates colitis symptoms, and reduces proinflammatory cytokine levels in the affected tissues. Importantly, repeated injections of IRAK4 inhibitor-loaded nanocarriers have no acute toxic effect on major organs of mice. Therefore, the developed nanocarriers have the potential to significantly improve the therapeutic efficacy of IRAK4 inhibitors for different inflammatory diseases.


Assuntos
Colite , Quinases Associadas a Receptores de Interleucina-1 , Camundongos , Animais , Quinases Associadas a Receptores de Interleucina-1/química , Citocinas , Inflamação/tratamento farmacológico , Edema
2.
Biol Reprod ; 110(6): 1191-1200, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38738758

RESUMO

In this brief review, we discuss our efforts to validate nanoplatforms for imaging and treatment of endometriosis. We specifically highlight our use of nonhuman primates and primate tissues in this effort. Endometriosis is a painful disorder of women and nonhuman primates where endometrium-like tissue exists outside of the uterus. There are no reliable, specific, and noninvasive diagnostic tests for endometriosis. Laparoscopic imaging remains the gold standard for identifying small endometriotic lesions in both women and monkeys. Visualizing and surgically removing microscopic lesions remains a clinical challenge. To address this challenge, we have created nanoparticle reagents that, when administered intravenously, enter endometriotic lesions both passively and by targeting endometriotic cells. The particles can carry payloads, including near-infrared fluorescent dyes and magnetic nanoparticles. These agents can be used for imaging and thermal ablation of diseased tissues. We evaluated this approach on macaque endometriotic cells, human and macaque endometrium engrafted into immunodeficient mice, in endometrium subcutaneously autografted in macaques, and in rhesus monkeys with spontaneous endometriosis. Employing these models, we report that nanoplatform-based reagents can improve imaging and provide thermal ablation of endometriotic tissues.


Assuntos
Endometriose , Nanopartículas , Endometriose/diagnóstico por imagem , Endometriose/veterinária , Endometriose/patologia , Feminino , Animais , Humanos
3.
Small ; 19(2): e2202343, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394151

RESUMO

Ectopic pregnancy (EP) is the leading cause of maternity-related death in the first trimester of pregnancy. Approximately 98% of ectopic implantations occur in the fallopian tube, and expedient management is crucial for preventing hemorrhage and maternal death in the event of tubal rupture. Current ultrasound strategies misdiagnose EP in up to 40% of cases, and the failure rate of methotrexate treatment for confirmed EP exceeds 10%. Here the first theranostic strategy for potential management of EP is reported using a near-infrared naphthalocyanine dye encapsulated within polymeric nanoparticles. These nanoparticles preferentially accumulate in the developing murine placenta within 24 h following systemic administration, and enable visualization of implantation sites at various gestational stages via fluorescence and photoacoustic imaging. These nanoparticles do not traverse the placental barrier to the fetus or impact fetal development. However, excitation of nanoparticles localized in specific placentas with focused NIR light generates heat (>43 °C) sufficient for disruption of placental function, resulting in the demise of targeted fetuses with no effect on adjacent fetuses. This novel approach would enable diagnostic confirmation of EP when current imaging strategies are unsuccessful, and elimination of EP could subsequently be achieved using the same nano-agent to generate localized hyperthermia resulting in targeted placental impairment.


Assuntos
Hipertermia Induzida , Gravidez Ectópica , Gravidez , Feminino , Humanos , Animais , Camundongos , Placenta/diagnóstico por imagem , Gravidez Ectópica/terapia , Tubas Uterinas/diagnóstico por imagem , Ultrassonografia
4.
Small ; 18(24): e2107808, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434932

RESUMO

Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.


Assuntos
Endometriose , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Animais , Meios de Contraste , Endometriose/terapia , Feminino , Calefação , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos , Camundongos , Fator A de Crescimento do Endotélio Vascular
5.
Small ; 18(44): e2204436, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098251

RESUMO

This study presents the first messenger RNA (mRNA) therapy for metastatic ovarian cancer and cachexia-induced muscle wasting based on lipid nanoparticles that deliver follistatin (FST) mRNA predominantly to cancer clusters following intraperitoneal administration. The secreted FST protein, endogenously synthesized from delivered mRNA, efficiently reduces elevated activin A levels associated with aggressive ovarian cancer and associated cachexia. By altering the cancer cell phenotype, mRNA treatment prevents malignant ascites, delays cancer progression, induces the formation of solid tumors, and preserves muscle mass in cancer-bearing mice by inhibiting negative regulators of muscle mass. Finally, mRNA therapy provides synergistic effects in combination with cisplatin, increasing the survival of mice and counteracting muscle atrophy induced by chemotherapy and cancer-associated cachexia. The treated mice develop few nonadherent tumors that are easily resected from the peritoneum. Clinically, this nanomedicine-based mRNA therapy can facilitate complete cytoreduction, target resistance, improve resilience during aggressive chemotherapy, and improve survival in advanced ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Folistatina/metabolismo , Folistatina/farmacologia , Folistatina/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/terapia , Músculo Esquelético/metabolismo
6.
Mol Pharm ; 19(12): 4696-4704, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409995

RESUMO

Recently, therapeutics based on mRNA (mRNA) have attracted significant interest for vaccines, cancer immunotherapy, and gene editing. However, the lack of biocompatible vehicles capable of delivering mRNA to the target tissue and efficiently expressing the encoded proteins impedes the development of mRNA-based therapies for a variety of diseases. Herein, we report mRNA-loaded polymeric nanoparticles based on diethylenetriamine-substituted poly(aspartic acid) that induce protein expression in the lungs and muscles following intravenous and intramuscular injections, respectively. Animal studies revealed that the amount of polyethylene glycol (PEG) on the nanoparticle surface affects the translation of the delivered mRNA into the encoded protein in the target tissue. After systemic administration, only mRNA-loaded nanoparticles modified with PEG at a molar ratio of 1:1 (PEG/polymer) induce protein expression in the lungs. In contrast, protein expression was detected only following intramuscular injection of mRNA-loaded nanoparticles with a PEG/polymer ratio of 10:1. These findings suggest that the PEG density on the surface of poly(aspartic acid)-based nanoparticles should be optimized for different delivery routes depending on the purpose of the mRNA treatment.


Assuntos
Ácido Aspártico , Nanopartículas , Animais , RNA Mensageiro/genética , Polímeros , Imunoterapia , Polietilenoglicóis
7.
Small ; 17(7): e2004975, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491876

RESUMO

Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.


Assuntos
Endometriose , Neoplasias , Endometriose/tratamento farmacológico , Endométrio , Feminino , Humanos , Nanomedicina , Dor Pélvica
8.
Nanomedicine ; 37: 102446, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303840

RESUMO

Ewing's sarcoma (EwS) is the second most common bone cancer in children and adolescents. Current chemotherapy regimens are mainly ineffective in patients with relapsed disease and cause long-term effects in survivors. Therefore, we have developed a combinatorial therapy based on a novel drug candidate named ML111 that exhibits selective activity against EwS cells and synergizes with vincristine. To increase the aqueous solubility of hydrophobic ML111, polymeric nanoparticles (ML111-NP) were developed. In vitro data revealed that ML111-NP compromise viability of EwS cells without affecting non-malignant cells. Furthermore, ML111-NP exhibit strong synergistic effects in a combination with vincristine on EwS cells, while this drug pair exhibits antagonistic effects towards normal cells. Finally, animal studies validated that ML111-NP efficiently accumulate in orthotopic EwS xenografts after intravenous injection and provide superior therapeutic outcomes in a combination with vincristine without evident toxicity. These results support the potential of the ML111-based combinatorial therapy for EwS.


Assuntos
Antineoplásicos , Sinergismo Farmacológico , Sarcoma de Ewing , Vincristina , Animais , Humanos , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Adv Healthc Mater ; 12(9): e2202946, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36495088

RESUMO

Photoacoustic imaging (PAI) has tremendous potential for improving ovarian cancer detection. However, the lack of effective exogenous contrast agents that can improve PAI diagnosis accuracy significantly limits this application. This study presents a novel contrast nanoagent with a specific spectral signature that can be easily distinguished from endogenous chromophores in cancer tissue, allowing for high-contrast tumor visualization. Constructed as a 40 nm biocompatible polymeric nanoparticle loaded with two naphthalocyanine dyes, this agent is capable of efficient ovarian tumor accumulation after intravenous injection. The developed nanoagent displays a spectral signature with two well-separated photoacoustic peaks of comparable PA intensities in the near-infrared (NIR) region at 770 and 860 nm, which remain unaffected in cancer tissue following systemic delivery. In vivo experiments in mice with subcutaneous and intraperitoneal ovarian cancer xenografts validate that this specific spectral signature allows for accurate spectral unmixing of the nanoagent signal from endogenous contrast in cancer tissue, allowing for sensitive noninvasive cancer diagnosis. In addition, this nanoagent can selectively eradicate ovarian cancer tissue with a single dose of photothermal therapy by elevating the intratumoral temperature to ≈49 °C upon exposure to NIR light within the 700-900 nm range.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Técnicas Fotoacústicas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Fototerapia/métodos , Nanopartículas/uso terapêutico , Polímeros , Diagnóstico por Imagem , Técnicas Fotoacústicas/métodos
10.
Small Methods ; 6(12): e2200916, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36319445

RESUMO

Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Camundongos , Animais , Nanopartículas de Magnetita/uso terapêutico , Hipertermia Induzida/métodos , Calefação , Campos Magnéticos , Hipertermia , Neoplasias/terapia , Nitrogênio
11.
Pharmaceutics ; 12(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113767

RESUMO

Herein, we report a novel therapy for prostate cancer based on systemically delivered magnetic hyperthermia. Conventional magnetic hyperthermia is a form of thermal therapy where magnetic nanoparticles delivered to cancer sites via intratumoral administration produce heat in the presence of an alternating magnetic field (AMF). To employ this therapy for prostate cancer tumors that are challenging to inject intratumorally, we designed novel nanoclusters with enhanced heating efficiency that reach prostate cancer tumors after systemic administration and generate desirable intratumoral temperatures upon exposure to an AMF. Our nanoclusters are based on hydrophobic iron oxide nanoparticles doped with zinc and manganese. To overcome the challenges associated with the poor water solubility of the synthesized nanoparticles, the solvent evaporation approach was employed to encapsulate and cluster them within the hydrophobic core of PEG-PCL (methoxy poly(ethylene glycol)-b-poly(ε-caprolactone))-based polymeric nanoparticles. Animal studies demonstrated that, following intravenous injection into mice bearing prostate cancer grafts, the nanoclusters efficiently accumulated in cancer tumors within several hours and increased the intratumoral temperature above 42 °C upon exposure to an AMF. Finally, the systemically delivered magnetic hyperthermia significantly inhibited prostate cancer growth and did not exhibit any signs of toxicity.

12.
Emerg Top Life Sci ; 2(3): 405-417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31032429

RESUMO

Pseudo-oligosaccharides are microbial-derived secondary metabolites whose chemical structures contain pseudosugars (glycomimetics). Due to their high resemblance to the molecules of life (carbohydrates), most pseudo-oligosaccharides show significant biological activities. Some of them have been used as drugs to treat human and plant diseases. Because of their significant economic value, efforts have been put into understanding their biosynthesis, optimizing their fermentation conditions, and engineering their metabolic pathways to obtain better production yields. A number of unusual enzymes participating in diverse biosynthetic pathways to pseudo-oligosaccharides have been reported. Various methods and conditions to improve the production yields of the target compounds and eliminate byproducts have also been developed. This review article describes recent studies on the biosynthesis, fermentation optimization, and metabolic engineering of high-value pseudo-oligosaccharides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA