Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39024076

RESUMO

Transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) possesses diagnostic and therapeutic benefits. However, TMS provokes a large pulse artifact that momentarily obscures the cortical response, presenting a significant challenge for EEG data interpretation. We examined how stimulation intensity (SI), EEG sampling frequency (Fs) and synchronization of stimulation with EEG sampling influence the amplitude and duration of the pulse artifact. In eight healthy subjects, single-pulse TMS was administered to the primary motor cortex, due to its well-documented responsiveness to TMS. We applied two different SIs (90% and 120% of resting motor threshold, representing the commonly used subthreshold and suprathreshold levels) and Fs (conventional 5 kHz and high frequency 20 kHz) both with TMS synchronized with the EEG sampling and the conventional non-synchronized setting. Aside from removal of the DC-offset and epoching, no preprocessing was performed to the data. Using a random forest regression model, we identified that Fs had the largest impact on both the amplitude and duration of the pulse artifact, with median variable importance values of 1.444 and 1.327, respectively, followed by SI (0.964 and 1.083) and sampling synchronization (0.223 and 0.248). This indicated that Fs and SI are crucial for minimizing prediction error and thus play a pivotal role in accurately characterizing the pulse artifact. The results of this study enable focusing some of the study design parameters to minimize TMS pulse artifact, which is essential for both enhancing the reliability of clinical TMS-EEG applications and improving the overall integrity and interpretability of TMS-EEG data.


Assuntos
Artefatos , Eletroencefalografia , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Eletroencefalografia/métodos , Feminino , Adulto , Córtex Motor/fisiologia , Adulto Jovem , Voluntários Saudáveis , Potencial Evocado Motor/fisiologia , Reprodutibilidade dos Testes , Algoritmos
2.
Brain Res ; 1805: 148284, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796474

RESUMO

Transcranial magnetic stimulation (TMS) can induce motor evoked potentials (MEPs). In TMS applications, near-threshold stimulation intensities (SIs) are often used for characterizing corticospinal excitability using MEPs. We aimed to characterize the individual near-threshold recruitment of MEPs and to test the assumptions related to selection of the suprathreshold SI. We utilized MEP data from a right-hand muscle induced at variable SIs. The single-pulse TMS (spTMS) data from previous studies (27 healthy volunteers), as well as data from new measurements (10 healthy volunteers) that included also MEPs modulated by paired-pulse TMS (ppTMS), were included. The probability of MEP (pMEP) was represented with individually fitted cumulative distribution function (CDF) with two parameters: resting motor threshold (rMT) and spread relative to rMT. MEPs were recorded with 110% and 120% of rMT as well as with Mills-Nithi upper threshold (UT). The individual near-threshold characteristics varied with CDF parameters: the rMT and the relative spread (median: 0.052). The rMT was lower with ppTMS than with spTMS (p < 0.001), while the relative spread remained similar (p = 0.812). At suprathreshold SIs, the probability of MEP was similar between UT and 110% of rMT (pMEP > 0.88), and higher for 120% of rMT (pMEP > 0.98). The individual near-threshold characteristics determine how probably MEPs are produced at common suprathreshold SIs. At the population level, the used SIs UT and 110% of rMT produced MEPs at similar probability. The individual variability in the relative spread parameter was large; therefore, the method of determining the proper suprathreshold SI for TMS applications is of crucial importance.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Mãos , Eletromiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA