Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38544110

RESUMO

Compact high-frequency arrays are of interest for clinical and preclinical applications in which a small-footprint or endoscopic device is needed to reach the target anatomy. However, the fabrication of compact arrays entails the connection of several dozens of small elements to the imaging system through a combination of flexible printed circuit boards at the array end and micro-coaxial cabling to the imaging system. The methods currently used, such as wire bonding, conductive adhesives, or a dry connection to a flexible circuit, considerably increase the array footprint. Here, we propose an interconnection method that uses vacuum-deposited metals, laser patterning, and electroplating to achieve a right-angle, compact, reliable connection between array elements and flexible-circuit traces. The array elements are thickened at the edges using patterned copper traces, which increases their cross-sectional area and facilitates the connection. We fabricated a 2.3 mm by 1.7 mm, 64-element linear array with elements at a 36 µm pitch connected to a 4 cm long flexible circuit, where the interconnect adds only 100 µm to each side of the array. Pulse-echo measurements yielded an average center frequency of 55 MHz and a -6 dB bandwidth of 41%. We measured an imaging resolution of 35 µm in the axial direction and 114 µm in the lateral direction and demonstrated the ex vivo imaging of porcine esophageal tissue and the in vivo imaging of avian embryonic vasculature.


Assuntos
Transdutores , Animais , Suínos , Desenho de Equipamento , Ultrassonografia , Imagens de Fantasmas , Impedância Elétrica
2.
Mol Pharm ; 17(9): 3369-3377, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32697098

RESUMO

A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile. The presence of tetrazine in turn makes it possible to link the albumin-binding optoacoustic signaling agent to a wide range of targeting molecules. To demonstrate the utility and ease of use of the platform, a novel PA probe for imaging calcium accretion was generated using a single-step bioorthogonal coupling reaction where high-resolution PA images of the knee joint in mice were obtained as early as 1 h post injection. Whole-body distribution was subsequently determined by labeling the probe with 99mTc and performing tissue counting following necropsy. These studies, along with tumor imaging and in vitro albumin binding studies, revealed that the core PA contrast agent can be imaged in vivo and can be easily linked to targeting molecules for organ-specific uptake.


Assuntos
Corantes Fluorescentes/química , Compostos Heterocíclicos com 1 Anel/química , Animais , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Feminino , Compostos Heterocíclicos/química , Humanos , Articulação do Joelho/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos
3.
Sensors (Basel) ; 15(4): 8020-41, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25855038

RESUMO

Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.


Assuntos
Transdutores , Diagnóstico por Imagem , Eletrônica/instrumentação , Desenho de Equipamento , Sistemas Microeletromecânicos/instrumentação , Ultrassom
4.
Phys Rev Lett ; 112(17): 174302, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836252

RESUMO

Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

5.
Sensors (Basel) ; 14(8): 14806-38, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25123465

RESUMO

An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.


Assuntos
Acústica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Sobrevivência Celular/fisiologia , Simulação por Computador , Desenho de Equipamento/instrumentação , Microfluídica/instrumentação , Transdutores , Ultrassom/instrumentação
6.
Ultrasound Med Biol ; 50(4): 457-466, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238200

RESUMO

OBJECTIVE: High-frequency, high-resolution transrectal micro-ultrasound (micro-US: ≥15 MHz) imaging of the prostate is emerging as a beneficial tool for scoring disease risk and accurately targeting biopsies. Adding photoacoustic (PA) imaging to visualize abnormal vascularization and accumulation of contrast agents in tumors has potential for guiding focal therapies. In this work, we describe a new imaging platform that combines a transrectal micro-US system with transurethral light delivery for PA imaging. METHODS: A clinical transrectal micro-US system was adapted to acquire PA images synchronous to a tunable laser pulse. A transurethral side-firing optical fiber was developed for light delivery. A polyvinyl chloride (PVC)-plastisol phantom was developed and characterized to image PA contrast agents in wall-less channels. After resolution measurement in water, PA imaging was demonstrated in phantom channels with dyes and biodegradable nanoparticle contrast agents called porphysomes. In vivo imaging of a tumor model was performed, with porphysomes administered intravenously. RESULTS: Photoacoustic imaging data were acquired at 5 Hz, and image reconstruction was performed offline. PA image resolution at a 14-mm depth was 74 and 261 µm in the axial and lateral directions, respectively. The speed of sound in PVC-plastisol was 1383 m/s, and the attenuation was 4 dB/mm at 20 MHz. PA signal from porphysomes was spectrally unmixed from blood signals in the tumor, and a signal increase was observed 3 h after porphysome injection. CONCLUSION: A combined transrectal micro-US and PA imaging system was developed and characterized, and in vivo imaging demonstrated. High-resolution PA imaging may provide valuable additional information for diagnostic and therapeutic applications in the prostate.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Masculino , Humanos , Próstata/diagnóstico por imagem , Meios de Contraste , Ultrassonografia/métodos , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-37713228

RESUMO

Superharmonic contrast imaging (SpHI) suppresses tissue clutter and allows high-contrast visualization of the vasculature. An array-based dual-frequency (DF) probe has been developed for SpHI, integrating a 21-MHz, 256-element microultrasound imaging array with a 2-MHz, 32-element array to take advantage of the broadband nonlinear responses from microbubble (MB) contrast agents. In this work, ultrafast imaging with plane waves was implemented for SpHI to increase the acquisition frame rate. Ultrafast imaging was also implemented for microultrasound B-mode imaging (HFPW B-mode) to enable high-resolution visualization of the tissue structure. Coherent compounding was demonstrated in vitro and in vivo in both imaging modes. Acquisition frame rates of 4.5 kHz and 187 Hz in HFPW B-mode imaging were achieved for imaging up to 21 mm with one and 25 angles, respectively, and 3.5 kHz and 396 Hz in the SpHI mode with one and nine coherently compounded angles, respectively. SpHI images showed suppression of tissue clutter prior to and after the introduction of MBs in vitro and in vivo. The nine-angle coherently compounded 2-D SpHI images of contrast-filled flow channel showed a contrast-to-tissue ratio (CTR) of 26.0 dB, a 2.5-dB improvement relative to images reconstructed from 0° steering. Consistent with in vitro imaging, the nine-angle compounded 2-D SpHI of a Lewis lung cancer tumor showed a 2.6-dB improvement in contrast enhancement, relative to 0° steering, and additionally revealed a region of nonviable tissue. The 3-D display of the volumetric SpHI data acquired from a xenograft mouse tumor using both 0° steering and nine-angle compounding allowed the visualization of the tumor vasculature. A small vessel visible in the compounded SpHI image, measuring around [Formula: see text], is not visualized in the 0° steering SpHI image, demonstrating the superiority of the latter in detecting fine structures within the tumor.


Assuntos
Neoplasias , Animais , Camundongos , Imagens de Fantasmas , Ultrassonografia/métodos
8.
Acta Biomater ; 157: 288-296, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521676

RESUMO

Acoustic properties of biomaterials and engineered tissues reflect their structure and cellularity. High-frequency ultrasound (US) can non-invasively characterize and monitor these properties with sub-millimetre resolution. We present an approach to estimate the speed of sound, acoustic impedance, and acoustic attenuation of cell-laden hydrogels that accounts for frequency-dependent effects of attenuation in coupling media, hydrogel thickness, and interfacial transmission/reflection coefficients of US waves, all of which can bias attenuation estimates. Cell-seeded fibrin hydrogel disks were raster-scanned using a 40 MHz US transducer. Thickness, speed of sound, acoustic impedance, and acoustic attenuation coefficients were determined from the difference in the time-of-flight and ratios of the magnitudes of US signals, interfacial transmission/reflection coefficients, and acoustic properties of the coupling media. With this approach, hydrogel thickness was accurately measured by US, with agreement to confocal microscopy (r2 = 0.97). Accurate thickness measurement enabled acoustic property measurements that were independent of hydrogel thickness, despite up to 60% reduction in thickness due to cell-mediated contraction. Notably, acoustic attenuation coefficients increased with increasing cell concentration (p < 0.001), reflecting hydrogel cellularity independent of contracted hydrogel thickness. This approach enables accurate measurement of the intrinsic acoustic properties of biomaterials and engineered tissues to provide new insights into their structure and cellularity. STATEMENT OF SIGNIFICANCE: High-frequency ultrasound can measure the acoustic properties of engineered tissues non-invasively and non-destructively with µm-scale resolution. Acoustic properties, including acoustic attenuation, are related to intrinsic material properties, such as scatterer density. We developed an analytical approach to estimate the acoustic properties of cell-laden hydrogels that accounts for the frequency-dependent effects of attenuation in coupling media, the reflection/transmission of ultrasound waves at the coupling interfaces, and the dependency of measurements on hydrogel thickness. Despite up to 60% reduction in hydrogel thickness due to cell-mediated contraction, our approach enabled measurements of acoustic properties that were substantially independent of thickness. Acoustic attenuation increased significantly with increasing cell concentration (p < 0.001), demonstrating the ability of acoustic attenuation to reflect intrinsic physical properties of engineered tissues.


Assuntos
Acústica , Hidrogéis , Ultrassonografia , Hidrogéis/química , Ondas Ultrassônicas , Materiais Biocompatíveis
9.
Phys Rev Lett ; 108(19): 194301, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003045

RESUMO

We measure, in a single experiment, both the radiation pressure and the torque due to a wide variety of propagating acoustic vortex beams. The results validate, for the first time directly, the theoretically predicted ratio of the orbital angular momentum to linear momentum in a propagating beam. We experimentally determine this ratio using simultaneous measurements of both the levitation force and the torque on an acoustic absorber exerted by a broad range of helical ultrasonic beams produced by a 1000-element matrix transducer array. In general, beams with helical phase fronts have been shown to contain orbital angular momentum as the result of the azimuthal component of the Poynting vector around the propagation axis. Theory predicts that for both optical and acoustic helical beams the ratio of the angular momentum current of the beam to the power should be given by the ratio of the beam's topological charge to its angular frequency. This direct experimental observation that the ratio of the torque to power does convincingly match the expected value (given by the topological charge to angular frequency ratio of the beam) is a fundamental result.


Assuntos
Luz , Modelos Teóricos , Óptica e Fotônica , Fótons , Termodinâmica , Ultrassom/instrumentação , Ultrassom/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-35797322

RESUMO

Microultrasound (micro-US) has become an invaluable tool for preclinical research and in emerging applications in clinical diagnosis and treatment guidance. Several such applications can benefit from arrays with a small footprint and endoscopic form factor. However, critical challenges arise in making electrical connections to array elements in such spatial constraints. In this work, we describe a method to pattern a high-density flexible circuit cabling on a copper-on polyimide film, using laser ablation of a polymer resist and wet etching, and then demonstrate a connection to a micro-US array. We investigate laser ablation process parameters and evaluate the ability to consistently pattern continuous copper traces. A minimum 30- [Formula: see text] pitch was achieved with 5- [Formula: see text]-wide electrode lines, and continuity of a 5-m-long trace is demonstrated. A flexible circuit with 30-mm-long traces with 30- [Formula: see text] line and 30- [Formula: see text] space before fan-out was fabricated to connect in an interleaved manner to a 32-element array with 30- [Formula: see text] element pitch. Metal deposition and laser ablation were used to connect and pattern the element electrodes to the copper traces of the flexible circuit. Electrical and acoustic measurements show good yield and consistent impedance across channels. Element pulse-echo tests demonstrated device functionality; the two-way pulse had 43-MHz center frequency and 40% fractional bandwidth (-6 dB). The proposed manufacturing methods facilitate the prototyping and fabrication of flexible endoscopic or small-footprint micro-US devices.


Assuntos
Cobre , Transdutores , Desenho de Equipamento , Polímeros , Ultrassonografia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38125957

RESUMO

Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of 23 µm, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.

12.
Ultrasonics ; 110: 106245, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32932144

RESUMO

Emerging contrast imaging studies have highlighted the potential of nanobubbles for both intravascular and extravascular applications. Reports to date on nanobubbles have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and B-mode or contrast-mode on preclinical and clinical systems. However, none of these studies directly examined nanobubble acoustic signatures systematically to implement nonlinear imaging schemes in a methodical manner based on nanobubble behaviour. Here, nanobubble nonlinear behaviour is investigated at high frequencies (12.5, 25, 30 MHz) and low concentration (106 mL-1) in a channel phantom, with different pulse types in single- and multi-pulse sequences to examine behaviour under conditions relevant to high frequency imaging. Porphyrin nanobubbles are demonstrated to initiate nonlinear scattering at high frequencies in a pressure-threshold dependent manner, as previously observed at low frequencies. This threshold behaviour was then utilized to demonstrate enhanced nanobubble imaging with pulse inversion, amplitude modulation, and a combination of the two, progressing towards the improved sensitivity and expanded utility of these ultrasound contrast agents.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33513102

RESUMO

There has been growing interest in nanobubbles (NBs) for vascular and extravascular ultrasound contrast imaging and therapeutic applications. Studies to date have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and uncalibrated B-mode or contrast-mode on commercial systems without reporting investigations on NB signatures upon which the imaging protocols should be based. We recently demonstrated that low concentrations (106 mL-1) of porphyrin-lipid-encapsulated NBs scatter nonlinearly at low (2.5, 8 MHz) and high (12.5, 25, 30 MHz) frequencies in a pressure threshold-dependent manner that is advantageous for amplitude modulation (AM) imaging. Here, we implement pressure-calibrated AM at high frequency on a commercial preclinical array system to enhance sensitivity to nonlinear scattering of three phospholipid-based NB formulations. With this approach, improvements in contrast to tissue ratio relative to B-mode between 12.4 and 22.8 dB are demonstrated in a tissue-mimicking phantom, and between 6.7 and 14.8 dB in vivo.


Assuntos
Meios de Contraste , Diagnóstico por Imagem , Imagens de Fantasmas , Ultrassonografia
14.
Artigo em Inglês | MEDLINE | ID: mdl-33872146

RESUMO

Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging method that produces high-resolution, 3-D maps of the microvasculature. Previous acoustic angiography studies have used twoelement, annular,mechanicallyactuated transducers(called "wobblers") to image microvasculature in preclinical tumor models with high contrast-to-tissue ratio and resolution, but these earlywobbler transducerscould not achieve the depth and sensitivity required for clinical acoustic angiography. In this work, we present a system for performing acoustic angiography with a novel dual-frequency(DF) transducer-a coaxially stacked DF array (DFA). We evaluate the DFA system bothin vitro andin vivo and demonstrate improvements in sensitivity and imaging depth up to 13.1 dB and 10 mm, respectively, compared with previous wobbler probes.


Assuntos
Angiografia , Meios de Contraste , Acústica , Transdutores , Ultrassonografia
15.
Artigo em Inglês | MEDLINE | ID: mdl-33729934

RESUMO

Superharmonic imaging with dual-frequency imaging systems uses conventional low-frequency ultrasound transducers on transmit, and high-frequency transducers on receive to detect higher order harmonic signals from microbubble contrast agents, enabling high-contrast imaging while suppressing clutter from background tissues. Current dual-frequency imaging systems for superharmonic imaging have been used for visualizing tumor microvasculature, with single-element transducers for each of the low- and high-frequency components. However, the useful field of view is limited by the fixed focus of single-element transducers, while image frame rates are limited by the mechanical translation of the transducers. In this article, we introduce an array-based dual-frequency transducer, with low-frequency and high-frequency arrays integrated within the probe head, to overcome the limitations of single-channel dual-frequency probes. The purpose of this study is to evaluate the line-by-line high-frequency imaging and superharmonic imaging capabilities of the array-based dual-frequency probe for acoustic angiography applications in vitro and in vivo. We report center frequencies of 1.86 MHz and 20.3 MHz with -6 dB bandwidths of 1.2 MHz (1.2-2.4 MHz) and 14.5 MHz (13.3-27.8 MHz) for the low- and high-frequency arrays, respectively. With the proposed beamforming schemes, excitation pressure was found to range from 336 to 458 kPa at its azimuthal foci. This was sufficient to induce nonlinear scattering from microbubble contrast agents. Specifically, in vitro contrast channel phantom imaging and in vivo xenograft mouse tumor imaging by this probe with superharmonic imaging showed contrast-to-tissue ratio improvements of 17.7 and 16.2 dB, respectively, compared to line-by-line micro-ultrasound B-mode imaging.


Assuntos
Angiografia , Meios de Contraste , Animais , Camundongos , Microbolhas , Imagens de Fantasmas , Transdutores , Ultrassonografia
16.
Sci Rep ; 11(1): 7780, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833288

RESUMO

Quantitative Doppler ultrasound of the carotid artery has been proposed as an instantaneous surrogate for monitoring rapid changes in left ventricular output. Tracking immediate changes in the arterial Doppler spectrogram has value in acute care settings such as the emergency department, operating room and critical care units. We report a novel, hands-free, continuous-wave Doppler ultrasound patch that adheres to the neck and tracks Doppler blood flow metrics in the common carotid artery using an automated algorithm. String and blood-mimicking test objects demonstrated that changes in velocity were accurately measured using both manually and automatically traced Doppler velocity waveforms. In a small usability study with 22 volunteer users (17 clinical, 5 lay), all users were able to locate the carotid Doppler signal on a volunteer subject, and, in a subsequent survey, agreed that the device was easy to use. To illustrate potential clinical applications of the device, the Doppler ultrasound patch was used on a healthy volunteer undergoing a passive leg raise (PLR) as well as on a congestive heart failure patient at resting baseline. The wearable carotid Doppler patch holds promise because of its ease-of-use, velocity measurement accuracy, and ability to continuously record Doppler spectrograms over many cardiac and respiratory cycles.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Unidades de Terapia Intensiva , Testes Imediatos , Ultrassonografia Doppler/instrumentação , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Estudo de Prova de Conceito
17.
Ultrasound Med Biol ; 46(2): 359-368, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31708270

RESUMO

Gas vesicles (GVs) are nanosized structures (45-800 nm) and have been reported to produce non-linear contrast signals, making them an attractive agent for molecular targeting of tumors. One barrier to their use for pre-clinical oncology studies is rapid uptake into the reticuloendothelial system (RES) and consequent rapid decrease in contrast signal after infusion ends and low signal on reperfusion after a bubble burst sequence. The purpose of this study was to examine suppression of the RES and surface modification of GVs to prolong contrast circulation in tumors for ultrasound imaging. Ultrasound imaging to measure dynamics of contrast signal intensity in tumor models was carried out using a 21-MHz high-frequency array transducer with the Vevo 2100 ultrasound system. The non-linear contrast signal from intravenously injected GVs compared with peak enhancement was measured during contrast wash-out and on reperfusion after a contrast burst sequence. Disrupting the RES by saturating the macrophage population or chemically inhibiting the Kupffer cell population with gadolinium or Intralipid preserves 62%-88% of GVs' contrast enhancement relative to peak during the wash-out phase and 32%-56% on reperfusion compared with 38% and 14%, respectively, for no disruption of the RES, indicating longer circulation of GVs in the tumor. Additionally, coating the GVs with 2-, 5- or 10-kDa polyethylene glycol (PEG) chains resulted in >70% contrast signal retention in the tumors during wash-out and, for 5- or 10-kDa PEG chains, a return to >45% of peak contrast signal on reperfusion. These findings indicate that GVs can be used as a contrast agent for tumor imaging and that disruption of the RES improved recirculation and maintained contrast enhancement caused by GVs in the tumors.


Assuntos
Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Gases , Microbolhas , Sistema Fagocitário Mononuclear/metabolismo , Neoplasias/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Neoplasias/patologia , Polietilenoglicóis , Ultrassonografia/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-31940529

RESUMO

Recent advances in high frame rate biomedical ultrasound have led to the development of ultrasound localization microscopy (ULM), a method of imaging microbubble (MB) contrast agents beyond the diffraction limit of conventional coherent imaging techniques. By localizing and tracking the positions of thousands of individual MBs, ultrahigh resolution vascular maps are generated which can be further analyzed to study disease. Isolating bubble echoes from tissue signal is a key requirement for super-resolution imaging which relies on the spatiotemporal separability and localization of the bubble signals. To date, this has been accomplished either during acquisition using contrast imaging sequences or post-beamforming by applying a spatiotemporal filter to the B-mode images. Superharmonic imaging (SHI) is another contrast imaging method that separates bubbles from tissue based on their strongly nonlinear acoustic properties. This approach is highly sensitive, and, unlike spatiotemporal filters, it does not require decorrelation of contrast agent signals. Since this superharmonic method does not rely on bubble velocity, it can detect completely stationary and moving bubbles alike. In this work, we apply SHI to ULM and demonstrate an average improvement in SNR of 10.3-dB in vitro when compared with the standard singular value decomposition filter approach and an increase in SNR at low flow ( [Formula: see text]/frame) from 5 to 16.5 dB. Additionally, we apply this method to imaging a rodent kidney in vivo and measure vessels as small as [Formula: see text] in diameter after motion correction.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Microvasos/diagnóstico por imagem , Ultrassonografia/métodos , Angiografia , Animais , Feminino , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Movimento , Ratos
19.
Ultrasound Med Biol ; 45(9): 2525-2539, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31196746

RESUMO

Superharmonic imaging is an ultrasound contrast imaging technique that differentiates microbubble echoes from tissue through detection of higher-order bubble harmonics in a broad frequency range well above the excitation frequency. Application of superharmonic imaging in three dimensions allows specific visualization of the tissue microvasculature with high resolution and contrast, a technique referred to as acoustic angiography. Because of the need to transmit and receive across a bandwidth that spans up to the fifth harmonic of the fundamental and higher, this imaging approach requires imaging probes comprising dedicated transducers for transmit and receive. In this work, we report on a new dual-frequency probe including two 1.7-MHz rectangular transducers positioned one on each side of a 20-MHz 256-element array. Finite element modeling-based design, fabrication processes and assembly of the transducer are described, as is integration with a high-frequency ultrasound imaging platform. Dual-frequency single-plane-wave imaging was performed with a microbubble contrast agent in flow phantoms and compared with conventional high-frequency B-mode imaging, and resolution and contrast-to-tissue ratio were quantified. This work represents an intermediate but informative step toward the development of dual-frequency imaging probes based on array technology, specifically designed for clinical applications of acoustic angiography.


Assuntos
Angiografia/métodos , Meios de Contraste/química , Microbolhas , Ultrassonografia/instrumentação , Técnicas In Vitro , Imagens de Fantasmas , Razão Sinal-Ruído , Transdutores
20.
Artigo em Inglês | MEDLINE | ID: mdl-29610089

RESUMO

Video capsule endoscopy (VCE) has significantly advanced visualization of the gastrointestinal tract since its introduction in the last 20 years. Work is now under way to combine VCE with microultrasound imaging. However, small maximum capsule dimensions, coupled with the electronics required to integrate ultrasound imaging capabilities, pose significant design challenges. This paper describes a simulation process for testing transducer geometries and imaging methodologies to achieve satisfactory imaging performance within the physical limitations of the capsule size and outlines many of the tradeoffs needed in the design of this new class of ultrasound capsule endoscopy (USCE) device. A hybrid MATLAB model is described, incorporating Krimholtz-Leedom-Matthaei circuit elements and digitizing and beamforming elements to render a gray-scale B-mode. This model is combined with a model of acoustic propagation to generate images of point scatterers. The models are used to demonstrate the performance of a USCE transducer configuration comprising a single, unfocused transmit ring of radius 5 mm separated into eight segments for electrical impedance control and a 512-element receive linear array, also formed into a ring. The MATLAB model includes an ultrasonic pulser circuit connected to a piezocrystal composite transmit transducer with a center frequency of 25 MHz. B-scan images are simulated for wire target phantoms, multilayered phantoms, and a gut wall model. To demonstrate the USCE system's ability to image tissue, a digital phantom was created from single-element ultrasonic transducer scans of porcine small bowel ex vivo obtained at a frequency of 45 MHz.


Assuntos
Endoscopia por Cápsula/instrumentação , Ultrassonografia/instrumentação , Algoritmos , Animais , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Intestino Delgado/diagnóstico por imagem , Modelos Biológicos , Imagens de Fantasmas , Suínos , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA