RESUMO
Ruthenium atoms located in the surfaces of carbosilane dendrimers markedly increase their anti-tumor properties. Carbosilane dendrimers have been widely studied as carriers of drugs and genes owing to such characteristic features as monodispersity, stability, and multivalence. The presence of ruthenium in the dendrimer structure enhances their successful use in anti-cancer therapy. In this paper, the activity of dendrimers of generation 1 and 2 against 1301 cells was evaluated using Transmission Electron Microscopy, comet assay and Real Time PCR techniques. Additionally, the level of reactive oxygen species (ROS) and changes of mitochondrial potential values were assessed. The results of the present study show that ruthenium dendrimers significantly decrease the viability of leukemia cells (1301) but show low toxicity to non-cancer cells (peripheral blood mononuclear cells-PBMCs). The in vitro test results indicate that the dendrimers injure the 1301 leukemia cells via the apoptosis pathway.
Assuntos
Antineoplásicos/farmacologia , Dendrímeros/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Rutênio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dendrímeros/química , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/químicaRESUMO
Over 225 000 new cases of ovarian cancer are diagnosed each year. Symptoms are often vague, so most cases are detected when the disease is at an advanced stage. There is a need to find new drugs which will be able to treat ovarian cancer effectively. One of the most promising antineoplastic agents is trabectedin (Yondelis), derived from the marine tunicate Ecteinascidia turbinata, approved by the European Union in July 2007 for the treatment of soft-tissue sarcomas. This drug shows a mechanism of action based on the inhibition of the nucleotide excision repair system. Trabectedin shows anti-tumour activity in vitro and in vivo in ovarian, breast, prostate, renal, melanoma and non-small cell lung cancer cell lines. Trabectedin in combination with pegylated liposomal doxorubicin demonstrates synergistic antineoplastic activity.
RESUMO
Coordination of ruthenium arene fragments on carbosilane dendrimers' surface greatly increases their antitumor properties. Newly synthetized ruthenium dendrimers are water-soluble, monodisperse and stable. Since carbosilane dendrimers are good carriers of drugs and genes, the presence of ruthenium in their structure makes them promising candidates for new drug delivery systems with improved antitumor potential. Carbosilane ruthenium dendrimers are more toxic to cancer cells than normal cells. Results of several in vitro studies applied here indicate that carbosilane ruthenium dendrimers induce apoptosis in promyelocytic leukemia HL-60 cells.
Assuntos
Antineoplásicos/farmacologia , Dendrímeros/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/síntese química , Dendrímeros/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Relação Estrutura-AtividadeRESUMO
In this work we investigated the mode of cell death induced by WP 631, a novel anthracycline antibiotic, in the ovarian cancer cell line (OV-90) derived from the malignant ascites of a patient diagnosed with advanced disease. The effects were compared with those of doxorubicin (DOX), a first generation anthracycline. The ability of WP 631 to induce apoptosis and necrosis was examined by double staining with Annexin V and propidium iodide, measurements of the level of intracellular calcium ions and cytochrome c, PARP cleavage. We also investigated the possible involvement of the caspases activation, DNA degradation (comet assay) and intracellular reactive oxygen species (ROS) production in the development of the apoptotic events and their significance for drug efficiency. The results obtained clearly demonstrate that antiproliferative capacity of WP 631 in tested cell line was a few times greater than that of DOX. Furthermore, ovarian cancer cells treated with WP 631 showed a higher mean level of basal DNA damage in comparison to DOX. In conclusion, WP 631 is able to induce caspase - dependent apoptosis in human ovarian cancer cells. Obtained results suggested that WP 631 may be a candidate for further evaluation as chemotherapeutic agents for human cancers.