Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(6): 1462-1465, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946953

RESUMO

Emission dynamics of a multimode broadband interband semiconductor laser have been investigated experimentally and theoretically. Non-linear dynamics of a III-V semiconductor quantum well surface-emitting laser reveal the existence of a modulational instability, observed in the anomalous dispersion regime. An additional unstable region arises in the normal dispersion regime, owing to carrier dynamics, and has no analogy in systems with fast gain recovery. The interplay between cavity dispersion and phase sensitive non-linearities is shown to affect the character of laser emission with phase turbulence, leading to regular self-excited oscillations of mode intensity, self-mode locking, and single-frequency emission stabilized by spectral symmetry breaking. Such physical behavior is a general phenomenon for any laser with a slow gain medium relative to the round trip time, in the absence of spatial inhomogeneities.

2.
Appl Opt ; 57(18): 5224-5229, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30117985

RESUMO

Exploiting III-V semiconductor technologies, vertical external-cavity surface-emitting laser (VECSEL) technology has been identified for years as a good candidate to develop lasers with high power, large coherence, and broad tunability. Combined with fiber amplification technology, tunable single-frequency lasers can be flexibly boosted to a power level of several tens of watts. Here, we demonstrate a high-power, single-frequency, and broadly tunable laser based on VECSEL technology. This device emits in the near-infrared around 1.06 µm and exhibits high output power (>100 mW) with a low-divergence diffraction-limited TEM00 beam. It also features a narrow free-running linewidth of <400 kHz with high spectral purity (side mode suppression ratio >55 dB) and continuous broadband tunability greater than 250 GHz (<15 V piezo voltage, 6 kHz cutoff frequency) with a total tunable range up to 3 THz. In addition, a compact design without any movable intracavity elements offers a robust single-frequency regime. Through fiber amplification, a tunable single-frequency laser is achieved at an output power of 50 W covering the wavelength range from 1057 to 1066 nm. Excess intensity noise brought on by the amplification stage is in good agreement with a theoretical model. A low relative intensity noise value of -145 dBc/Hz is obtained at 1 MHz, and we reach the shot-noise limit above 200 MHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA