Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Cardiovasc Med ; 25(2): 45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39077360

RESUMO

Background: Exercise capacity serves as a direct representation of cardiac function. The Duke Activity Status Index (DASI), a self-administered 12-item questionnaire, covers aspects of daily living, household tasks, sexual function, and physical activity. Although widely used to evaluate exercise capacity, its validation in Chinese cardiovascular disease (CVD) patients has not been thoroughly explored. Considering the significant cultural and lifestyle differences between China and Western countries, which may influence Chinese patients' comprehension and responses to DASI, our objective is to culturally adapt DASI for Chinese patients with CVD to ensure its precision in assessing exercise capacity. Methods: The cultural adaptation of the original DASI questionnaire into Chinese followed a rigorous process to ensure its validity, reliability, and sensitivity to Chinese CVD patients. The study included 107 outpatients diagnosed with CVD who completed the DASI and cardiopulmonary exercise testing (CPET). Cronbach's alpha, Spearman correlation, and factor analysis were utilized to test reliability and validity. Receiver operating characteristic (ROC) curve analysis was employed to assess the prognostic utility of the DASI. Results: Participants had a mean DASI score of 39.40 ± 10.75 and a peak oxygen uptake (Peak VO 2 ) of 19.53 ± 5.89 mL/min/kg. The Chinese version of the DASI exhibited satisfactory reliability and validity in CVD patients, with a Chronbach's alpha coefficient of 0.706. The DASI score demonstrated a moderate correlation with Peak VO 2 measured by CPET (r = 0.67, p < 0.001). Factor analysis yielded three factors, accounting for 56.76% of the total variance, with factor 1 contributing to 26.38% of the variance. ROC curve analysis demonstrated that the DASI exhibited discriminative utility in the identification of patients with improved long-term prognosis (p < 0.001). The ROC curve had an area of 0.788 [95% confidence interval (CI) = 0.704-0.871]. The DASI score ≥ 36.85 served as the optimal threshold for enhanced long-term prognosis, exhibiting a sensitivity of 0.80 and a specificity of 0.69. Conclusions: The culturally adapted DASI questionnaire is a straightforward and efficient tool for reasonably evaluating exercise capacity in Chinese CVD patients.

2.
Angew Chem Int Ed Engl ; 63(34): e202407355, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38837587

RESUMO

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46 % and 18.24 %, respectively, marking the highest value for NFREA-based OSCs.

3.
Toxics ; 12(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38922098

RESUMO

A field experiment with double cropping rice was carried out to study the foliar application effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As) accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce the accumulation of Cd and As in rice grains. The highest reductions in Cd and As content were observed when 1.5 mmol L-1 DDAC was sprayed, with 49.1% and 27.4% reductions in Cd and As content in early rice grains and 56.5% and 28.1% reductions in Cd and As content in late rice grains, respectively. In addition, the content of calcium (Ca) in rice grains increased significantly after DDAC foliar application, which was also conducive to the synthesis of amino acids such as glutamate (Glu), glycine (Gly) and cysteine (Cys) in rice grains. The results indicated that the foliar spraying of DDAC can inhibit the absorption, transport, accumulation and toxicity of Cd and As in rice grains by increasing amino acid synthesis and regulating the absorption and transport of essential elements.

4.
Sci Total Environ ; 930: 172861, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38685417

RESUMO

The mechanism of carboxymethylammonium chloride (CC) regulating cadmium (Cd) accumulation in rice was studied in field and hydroponic experiments. Field experiments showed that 0.2-1.2 mmol L-1 CC spraying effectively reduced Cd accumulation by 44 %-77 % in early rice grains and 39 %-78 % in late rice grains, significantly increased calcium (Ca) content and amino acids content in grains, as well as alleviated Cd-induced oxidative damage in leaves. Hydroponic experiments further verified the inhibition effect of CC on Cd accumulation. 1.2 mmol L-1 CC made the highest decrease of Cd content in shoots and roots of hydroponic seedlings by 45 % and 53 %, respectively. Exogenous CC significantly increased glutamate (Glu), glycine (Gly) and glutathione (GSH) content, and improved the activities of catalase (CAT) and superoxide dismutase (SOD) by 41-131 % and 11-121 % in shoots of hydroponic seedlings, respectively. Exogenous CC also increased the relative expression of OsGLR3.1-3.5 in the shoots and roots of hydroponic seedlings. The quantum computational chemistry was used to clarify that the Gly radical provided by CC could form various complexes with Cd through carboxyl oxygen atoms. These results showed that exogenous application of CC improved the tolerance to Cd by enhancing the antioxidant capacity; inhibited the absorption, transport and accumulation of Cd in rice by (1) promoting chelation, (2) increasing the GLRs activity through upregulating the content of Glu, Gly, as well as the expression of OsGLR3.1-3.5.


Assuntos
Cádmio , Oryza , Oryza/metabolismo , Oryza/genética , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
5.
Int J Biol Macromol ; 277(Pt 2): 134056, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074702

RESUMO

When it comes to enzyme stability and their application in organic solvents, enzyme biocatalysis has emerged as a popular substitute for conventional chemical processes. However, the demand for enzymes exhibiting improved stability remains a persistent challenge. Organic solvents can significantly impacts enzyme properties, thereby limiting their practical application. This study focuses on Lipase Thermomyces lanuginose, through molecular dynamics simulations and experiments, we quantified the effect of different solvent-lipase interfaces on the interfacial activation of lipase. Revealed molecular views of the complex solvation processes through the minimum distance distribution function. Solvent-protein interactions were used to interpret the factors influencing changes in lipase conformation and enzyme activity. We found that water content is crucial for enzyme stability, and the optimum water content for lipase activity was 35 % in the presence of benzene-water interface, which is closely related to the increase of its interfacial activation angle from 78° to 102°. Methanol induces interfacial activation in addition to significant competitive inhibition and denaturation at low water content. Our findings shed light on the importance of understanding solvent effects on enzyme function and provide practical insights for enzyme engineering and optimization in various solvent-lipase interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA