Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Environ Manage ; 356: 120642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503227

RESUMO

The polysilicate aluminum ferric (PSAF) was synthesized via copolymerization of polysilicic acid (PSi), AlCl3 and FeCl3 for treating oily wastewater from Daqing gas field. This study investigated the effects of key preparation factors such as the degree of PSi's preactivation and the ratio of (Fe + Al)/Si and Al/Fe on both polymerization and coagulation performance exhibited by PSAF. To determine the optimal timing for introducing Al3+ and Fe3+, zeta potential, viscosity and particle size were investigated. Additionally, infrared spectroscopy, X-ray powder diffraction, polarizing microscopy and scanning electron microscope analysis were employed to investigate the structure and morphology of PSAF. The results indicate that under conditions characterized by a SiO2 mass fraction of 2.5% and pH = 4.5, an optimal timing for introducing Al3+ and Fe3+ is at 100 min when PSi exhibits moderate polymerization along with sufficient stability. When considering molar ratios such as (Al + Fe)/Si being 6:4 and Al/Fe being 5:5, respectively, PSAF falls within a "stable zone" enabling storage period up to 32 days. Moreover, Jar test results demonstrate that at a dosage of 200 mg/L PSAF for oily wastewater treatment in gas fields could reach the maximum turbidity removal efficiency up to 99.5% while oil removal efficiency reach 88.6% without pH adjustment. The copolymerization facilitates the formation of larger PSAF aggregates with positive potential, thereby augmenting the coagulants' adsorption bridging and charge neutralization capabilities. As a result, PSAF has great potential as a practical coagulant for treating oil-containing wastewater in industrial settings.


Assuntos
Águas Residuárias , Purificação da Água , Alumínio/química , Dióxido de Silício , Polímeros , Ferro/química , Purificação da Água/métodos , Compostos Férricos/química
2.
Langmuir ; 38(47): 14508-14516, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36377419

RESUMO

Doubly re-entrant surfaces inspired by springtails exhibit excellent repellency to low-surface-tension liquid. However, the flexible doubly re-entrant surfaces are difficult to fabricate, especially for the overhang of the structure. Herein, we demonstrate a simple Fresnel aperture diffraction modulation strategy in microscale lithography coupled with a molding process to obtain the flexible doubly re-entrant superomniphobic surfaces with nanoscale overhangs. The negative nanoscale overhang features were formed in a single-layer photoresist due to the fine-modulation of the optical intensity fluctuation of the Fresnel aperture diffraction. The as-prepared flexible non-fluorinated polydimethylsiloxane (PDMS) doubly re-entrant microstructure based on the Fresnel aperture diffraction (D-BF) surface (without any additional treatments) could repel ethanol droplets (21.8 mN m-1) in the Cassie-Baxter state. The robust nanoscale overhangs obtained by the molding process enable the maximum breakthrough pressure for the low-surface-tension ethanol droplets on the D-BF surfaces up to about 230 Pa, allowing ethanol liquids with Weber numbers up to 8.7 to fully bounce off. The fabricated non-fluorinated D-BF superomniphobic surface maintains outstanding liquid repellency after the surface wettability modification and deformation test.

3.
Nanotechnology ; 31(47): 475601, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32885792

RESUMO

The development of multi-role flexible thermal films embedded with single-walled carbon nanotubes (SWCNTs) exhibiting an adjustable temperature coefficient of resistance (TCR) is presented. The composite film is prepared by an alternating electric field to assembling CNTs on Ni conductive layer and polyimide. Modified vacuum thermal treatment is then conducted to adjust the TCR behavior of films, thereby gaining the positive, negative and near-zero TCR ranging from -1.5% °C-1 to nearly 1.0% °C-1 at different annealing conditions, respectively. The changes of morphologies, tube crystallinity and chemical elements in films are investigated. The enhanced intertube couplings in bundles of CNTs, formations of chemical bonds and recrystallization in heat-treated films, resulting in the change of charge transport, play a dominant role in the evolution of the TCR behavior. Heat-treated films also exhibit linear temperature dependence and high stability while operating at wide ambient temperature, leading to broad prospects in flexible electronic thermal applications.

4.
Sensors (Basel) ; 20(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120933

RESUMO

Indium tin oxide (ITO) thin-film thermocouples monitor the temperature of hot section components in gas turbines. As an in situ measuring technology, the main challenge of a thin-film thermocouple is its installation on complex geometric surfaces. In this study, an ITO thin-film thermocouple probe based on a sapphire microrod was used to access narrow areas. The performance of the probe, i.e., the thermoelectricity and stability, was analyzed. This novel sensor resolves the installation difficulties of thin-film devices.

5.
Sensors (Basel) ; 20(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233710

RESUMO

Hot film sensors detect the flow shear stress based on the forced convection heat transfer to the fluid. Current hot film sensors have been significantly hindered by the relatively low sensitivity due to the massive heat conduction to the substrate. This paper describes the design, fabrication, simulation, and testing of a novel flow sensor with dual-layer hot film structures. More specifically, the heat conduction was insulated from the sensing heater to the substrate by controlling both sensing and guarding heaters working at the same temperature, resulting in a higher sensitivity. The experiment and simulation results showed that the sensitivity of the dual-layer hot film sensor was significantly improved in comparison to the single-layer sensor. Additionally, the dual-layer sensor was designed and fabricated in an integrated, flexible, and miniaturized manner. Its small size makes it an excellent candidate for flow detection.

6.
Sensors (Basel) ; 19(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866477

RESUMO

To solve the current problems with thin-film thermocouple signals on turbine blades in ultra-high temperature environments, this study explores the use of a through-hole lead connection technology for high-temperature resistant nickel alloys. The technique includes through-hole processing, insulation layer preparation, and filling and fixing of a high-temperature resistant conductive paste. The through-hole lead connection preparation process was optimized by investigating the influence of the inner diameter of the through-hole, solder volume, and temperature treatment on the contact strength and surface roughness of the thin-film for contact resistance. Finally, the technology was combined with a thin-film thermocouple to perform multiple thermal cycling experiments on the surface of the turbine blade at a temperature of 1000 °C. The results show that the through-hole lead connection technology can achieve a stable output of the thin-film thermocouple signal on the turbine blade.

7.
Sensors (Basel) ; 18(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111724

RESUMO

A micro-floating element wall shear stress sensor with backside connections has been developed for accurate measurements of wall shear stress under the turbulent boundary layer. The micro-sensor was designed and fabricated on a 10.16 cm SOI (Silicon on Insulator) wafer by MEMS (Micro-Electro-Mechanical System) processing technology. Then, it was calibrated by a wind tunnel setup over a range of 0 Pa to 65 Pa. The measurements of wall shear stress on a smooth plate were carried out in a 0.6 m × 0.6 m transonic wind tunnel. Flow speed ranges from 0.4 Ma to 0.8 Ma, with a corresponding Reynold number of 1.05 × 106~1.55 × 106 at the micro-sensor location. Wall shear stress measured by the micro-sensor has a range of about 34 Pa to 93 Pa, which is consistent with theoretical values. For comparisons, a Preston tube was also used to measure wall shear stress at the same time. The results show that wall shear stress obtained by three methods (the micro-sensor, a Preston tube, and theoretical results) are well agreed with each other.

8.
Sensors (Basel) ; 18(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326635

RESUMO

A flexible hot-film sensor array for wall shear stress, flow separation, and transition measurement has been fabricated and implemented in experiments. Parylene C waterproof layer is vapor phase deposited to encapsulate the sensor. Experimental studies of shear stress and flow transition on a flat plate have been undertaken in a water tunnel with the sensor array. Compared with the shear stress derived from velocity profile and empirical formulas, the measuring errors of the hot-film sensors are less than 5%. In addition, boundary layer transition of the flat plate has also been detected successfully. Ensemble-averaged mean, normalized root mean square, and power spectra of the sensor output voltage indicate that the Reynolds number when transition begins at where the sensor array located is 1.82 × 105, 50% intermittency transition is 2.52 × 105, and transition finishes is 3.96 × 105. These results have a good agreement with the transition Reynolds numbers, as measured by the Laser Doppler Velocimetry (LDV) system.

9.
Sensors (Basel) ; 17(10)2017 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-29065498

RESUMO

A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off.

10.
ACS Appl Bio Mater ; 7(1): 17-43, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091514

RESUMO

3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.


Assuntos
Bioimpressão , Humanos , Impressão Tridimensional , Engenharia Tecidual , Materiais Biocompatíveis
11.
Chemosphere ; 313: 137504, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513205

RESUMO

In this work, different synthetic methods of polymeric aluminum silicate sulfate (PASS) and their coagulability to oily sewage were comparatively studied. PASS was synthesized by two methods: gravity supercritical method and basic titration method, denoted as PASS-B and PASS-S, respectively. The results show that the PASS prepared by gravity supercritical method has better Alb and stability. By applying two coagulants to oily sewage, it was found that PASS-B exhibited better turbidity and oil removal. It was found that PASS-B still has good coagulation by testing its coagulation after placing the coagulant for 2 months. In acidic test water, PASS-B exhibited stronger deprotonation ability. Finally, the polymerization mechanism and coagulation mechanism of PASS-B were analyzed in combination with Al morphology distribution and coagulation experiments. Gravity supercritical method as a new polymerization method may replace the traditional preparation method of inorganic polymer coagulants in the future, especially in large-scale applications.


Assuntos
Esgotos , Purificação da Água , Sulfatos , Silicatos , Silicatos de Alumínio , Água , Purificação da Água/métodos , Floculação
12.
ACS Appl Mater Interfaces ; 14(34): 39665-39672, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983670

RESUMO

Flexible superomniphobic doubly re-entrant (Dual-T) microstructures inspired by springtails have attracted growing attention due to their excellent liquid-repellent properties. However, the simple and practical manufacturing processes of the flexible Dual-T microstructures are urgently needed. Here, we proposed a one-step molding process coupled with the lithography technique to fabricate the elastomeric polydimethylsiloxane (PDMS) Dual-T microstructure surfaces with high uniformity. The angle between the downward overhang and the horizontal direction could reach 90° (vertical overhang). The flexible superomniphobic Dual-T microstructure surfaces, without fluorination treatment and physical treatments, could repel liquids with a surface tension lower than 20 mN m-1 in the Cassie-Baxter state. Owing to the excellent robustness of the one-step molding downward overhanging, the max breakthrough pressure of this surface could reach up to 164.3 Pa for ethanol droplets. Furthermore, the flexible superomniphobic Dual-T surface allowed impinging ethanol droplets to completely rebound at the Weber number up to 7.1 with an impact velocity of ∼0.32 m s-1. The Dual-T microstructure surface maintained excellent superomniphobicity even after surface oxygen plasma treatment and exhibited excellent structural robustness and recoverability to various large mechanical deformations.

13.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 11): o3063, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22220072

RESUMO

The title mol-ecule, C(12)H(14)N(8)S(2), has point symmetry [Formula: see text] since it is situated on a crystallographic centre of symmetry. The 1-meth-yl/5-thio groups are in an anti-periplanar conformation. The dihedral angle between the benzene and tetra-zole rings is 84.33 (2)°. In the crystal, C-H⋯N hydrogen bonds link mol-ecules into ladder-like chains running along the b axis. There are also C-H⋯π inter-actions present in the crystal structure.

14.
ACS Appl Mater Interfaces ; 13(44): 53155-53161, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709794

RESUMO

Riblets inspired by shark skin exhibit a great air drag reduction potential in many industries, such as the aircraft, energy, and transportation industries. Many studies have reported that blade riblets attain the highest air drag reduction ability, with a current limit of ∼11%. Here, we propose multilayer hierarchical riblets (MLHRs) to further improve the air drag reduction ability. MLHRs were fabricated via a three-layer hybrid mask lithography method, and the air drag reduction ability was studied in a closed air channel. The experimental results indicated that the maximum air drag reduction achieved with MLHRs in the closed channel was 16.67%, which represents a 52% higher reduction than the highest previously reported. Conceptual models were proposed to explain the experiments from a microscopic perspective. MLHRs enhanced the stability of lifting and pinning vortices, while vortices gradually decelerated further, reducing the momentum exchange occurring near the wall. This verified that MLHRs overcome the current air drag reduction limit of riblets. The conceptual models lay a foundation to further improve the air drag reduction ability of riblets.

15.
Biomicrofluidics ; 9(4): 044106, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26339307

RESUMO

Cell studies at the single-cell level are becoming more and more critical for understanding the complex biological processes. Here, we present an optimization study investigating the positioning of single cells using micromolding in capillaries technology coupled with the cytophobic biomaterial poly (2-hydroxyethyl methacrylate) (poly (HEMA)). As a cytophobic biomaterial, poly (HEMA) was used to inhibit cells, whereas the glass was used as the substrate to provide a cell adhesive background. The poly (HEMA) chemical barrier was obtained using micromolding in capillaries, and the microchannel networks used for capillarity were easily achieved by reversibly bonding the polydimethylsiloxane mold and the glass. Finally, discrete cell adhesion regions were presented on the glass surface. This method is facile and low cost, and the reagents are commercially available. We validated the cytophobic abilities of the poly (HEMA), optimized the channel parameters for higher quality and more stable poly (HEMA) patterns by investigating the effects of changing the aspect ratio and the width of the microchannel on the poly (HEMA) grid pattern, and improved the single-cell occupancy by optimizing the dimensions of the cell adhesion regions.

16.
Sci Rep ; 3: 2865, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24091778

RESUMO

Surface-enhanced infrared absorption spectroscopy has attracted increased attention for direct access to molecular vibrational fingerprints in the mid-infrared. Perfect-absorber metamaterials (PAMs) with multi-band spectral responses and significant enhancement of the local near-field intensity were developed to improve the intrinsic absorption cross sections of absorption spectrum to identify the vibrational spectra of biomolecules. To verify its performance, the proposed infrared PAM array was used to identify the molecular stretches of a Parylene C film. The resonant responses of the infrared PAMs were accurately tuned to the vibrational modes of the C = C target bonds. The vibrational stretches of the C = C moiety were observed and the auto-fluorescence mechanisms of the Parylene C film were monitored. The unique properties of the PAMs indicate that this approach is a promising strategy for surface-enhanced molecular absorption spectroscopy (SEMS) in the mid-infrared region and for the tracking of characteristic molecular vibrational modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA