RESUMO
Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.
Assuntos
Imunidade Inata , Pulmão , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas , Animais , Pulmão/imunologia , Pulmão/citologia , Camundongos , Imunidade Inata/imunologia , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/metabolismo , Células Progenitoras Linfoides/imunologia , Células Progenitoras Linfoides/citologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Camundongos Knockout , Linfócitos/imunologia , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA , Fatores de TranscriçãoRESUMO
Tissue-resident immune cells stably localize in tissues largely independent of the circulatory system. While initial studies have focused on the recognition of CD8 + tissue-resident memory T (CD8 T RM) cells, it is now clear that numerous cell types such as CD4 + T cells, gd T cells, innate lymphoid cells and mucosal-associated invariant T (MAIT) cells form stable populations in tissues. They are enriched at the barrier surfaces and within non-lymphoid compartments. They provide an extensive immune network capable of sensing local perturbations of the body's homeostasis. This positioning enables immune cells to positively influence immune protection against infection and cancer but paradoxically also augment autoimmunity, allergy and chronic inflammatory diseases. Here, we highlight the recent studies across multiple lymphoid immune cell types that have emerged on this research topic and extend our understanding of this important cellular network. In addition, we highlight the areas that remain gaps in our knowledge of the regulation of these cells and how a deeper understanding may result in new ways to 'target' these cells to influence disease outcome and treatments.