Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(23): 7199-7217, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34654937

RESUMO

RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.


Assuntos
Proliferação de Células/fisiologia , Necroptose/fisiologia , Neoplasias/patologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Quimiocinas/biossíntese , Humanos , Mitocôndrias/metabolismo , Neoplasias/terapia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/fisiologia
2.
Gastroenterology ; 159(1): 289-305.e16, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171747

RESUMO

BACKGROUND & AIMS: We investigated whether ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) is involved in development of hepatocellular carcinoma (HCC). METHODS: We analyzed clinical and gene expression data from The Cancer Genome Atlas. Albumin-Cre (HepWT) mice and mice with hepatocyte-specific disruption of Abl1 (HepAbl-/- mice) were given hydrodynamic injections of plasmids encoding the Sleeping Beauty transposase and transposons with the MET gene and a catenin ß1 gene with an N-terminal truncation, which induces development of liver tumors. Some mice were then gavaged with the ABL1 inhibitor nilotinib or vehicle (control) daily for 4 weeks. We knocked down ABL1 with short hairpin RNAs in Hep3B and Huh7 HCC cells and analyzed their proliferation and growth as xenograft tumors in mice. We performed RNA sequencing and gene set enrichment analysis of tumors. We knocked down or overexpressed NOTCH1 and MYC in HCC cells and analyzed proliferation. We measured levels of phosphorylated ABL1, MYC, and NOTCH1 by immunohistochemical analysis of an HCC tissue microarray. RESULTS: HCC tissues had higher levels of ABL1 than non-tumor liver tissues, which correlated with shorter survival times of patients. HepWT mice with the MET and catenin ß1 transposons developed liver tumors and survived a median 64 days; HepAbl-/- mice with these transposons developed tumors that were 50% smaller and survived a median 81 days. Knockdown of ABL1 in human HCC cells reduced proliferation, growth as xenograft tumors in mice, and expression of MYC, which reduced expression of NOTCH1. Knockdown of NOTCH1 or MYC in HCC cells significantly reduced cell growth. NOTCH1 or MYC overexpression in human HCC cells promoted proliferation and rescued the phenotype caused by ABL1 knockdown. The level of phosphorylated (activated) ABL1 correlated with levels of MYC and NOTCH1 in human HCC specimens. Nilotinib decreased expression of MYC and NOTCH1 in HCC cell lines, reduced the growth of xenograft tumors in mice, and slowed growth of liver tumors in mice with MET and catenin ß1 transposons, reducing tumor levels of MYC and NOTCH1. CONCLUSIONS: HCC samples have increased levels of ABL1 compared with nontumor liver tissues, and increased levels of ABL1 correlate with shorter survival times of patients. Loss or inhibition of ABL1 reduces proliferation of HCC cells and slows growth of liver tumors in mice. Inhibitors of ABL1 might be used for treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptor Notch1/metabolismo , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Fosforilação , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptor Notch1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L822-L834, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28283479

RESUMO

Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca2+ ([Ca2+]cyt). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction.


Assuntos
Broncoconstritores/farmacologia , Histamina/farmacologia , Canais de Potássio KCNQ/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Quinase C/metabolismo , Traqueia/citologia , Cálcio/metabolismo , Células Cultivadas , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
4.
J Biol Chem ; 290(16): 9959-73, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25713073

RESUMO

Alcohol (EtOH) intoxication is a risk factor for increased morbidity and mortality with traumatic injuries, in part through inhibition of bone fracture healing. Animal models have shown that EtOH decreases fracture callus volume, diameter, and biomechanical strength. Transforming growth factor ß1 (TGF-ß1) and osteopontin (OPN) play important roles in bone remodeling and fracture healing. Mesenchymal stem cells (MSC) reside in bone and are recruited to fracture sites for the healing process. Resident MSC are critical for fracture healing and function as a source of TGF-ß1 induced by local OPN, which acts through the transcription factor myeloid zinc finger 1 (MZF1). The molecular mechanisms responsible for the effect of EtOH on fracture healing are still incompletely understood, and this study investigated the role of EtOH in affecting OPN-dependent TGF-ß1 expression in MSC. We have demonstrated that EtOH inhibits OPN-induced TGF-ß1 protein expression, decreases MZF1-dependent TGF-ß1 transcription and MZF1 transcription, and blocks OPN-induced MZF1 phosphorylation. We also found that PKA signaling enhances OPN-induced TGF-ß1 expression. Last, we showed that EtOH exposure reduces the TGF-ß1 protein levels in mouse fracture callus. We conclude that EtOH acts in a novel mechanism by interfering directly with the OPN-MZF1-TGF-ß1 signaling pathway in MSC.


Assuntos
Etanol/efeitos adversos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteopontina/farmacologia , Tíbia/efeitos dos fármacos , Fraturas da Tíbia/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Diferenciação Celular , Consolidação da Fratura/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Luciferases/genética , Luciferases/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Osteopontina/metabolismo , Fosforilação , Transdução de Sinais , Tíbia/lesões , Tíbia/metabolismo , Fraturas da Tíbia/genética , Fraturas da Tíbia/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1155-68, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125275

RESUMO

Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that inhibition of SIRT2 results in the degradation of c-MYC, which is important for HSC activation. In addition, we discovered that inhibition of SIRT2 suppresses the phosphorylation of ERK, which is critical for the stabilization of c-MYC. Moreover, we found that Sirt2 deficiency attenuates the hepatic fibrosis induced by carbon tetrachloride (CCl4) and thioacetamide (TAA). Furthermore, we showed that SIRT2, p-ERK, and c-MYC proteins are all overexpressed in human hepatic fibrotic tissues. These data suggest a critical role for the SIRT2/ERK/c-MYC axis in promoting hepatic fibrogenesis. Inhibition of the SIRT2/ERK/c-MYC axis represents a novel strategy to prevent and to potentially treat liver fibrosis and cirrhosis.


Assuntos
Cirrose Hepática/metabolismo , Sirtuína 2/genética , Adulto , Idoso , Animais , Tetracloreto de Carbono/toxicidade , Estudos de Casos e Controles , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuína 2/metabolismo , Tioacetamida/toxicidade
6.
Mol Cell ; 32(4): 554-63, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19026785

RESUMO

The protein encoded by paired-box homeotic gene 3 (PAX3) is a key regulator of the microphthalmia-associated transcription factor (Mitf) in the melanocyte lineage. Here, we show that PAX3 expression in skin is directly inhibited by TGF-beta/Smads. UV irradiation represses TGF-beta in keratinocytes, and the repression of TGF-beta/Smads upregulates PAX3 in melanocytes, which is associated with a UV-induced melanogenic response and consequent pigmentation. Furthermore, the TGF-beta-PAX3 signaling pathway interacts with the p53-POMC/MSH-MC1R signaling pathway, and both are crucial in melanogenesis. The activation of p53-POMC/MSH-MC1R signaling is required for the UV-induced melanogenic response because PAX3 functions in synergy with SOX10 in a cAMP-response element (CRE)-dependent manner to regulate the transcription of Mitf. This study will provide a rich foundation for further research on skin cancer prevention by enabling us to identify targeted small molecules in the signaling pathways of the UV-induced melanogenic response that are highly likely to induce naturally protective pigmentation.


Assuntos
Regulação da Expressão Gênica , Melanócitos/fisiologia , Fatores de Transcrição Box Pareados/antagonistas & inibidores , Fatores de Transcrição Box Pareados/genética , Fator de Crescimento Transformador beta/metabolismo , Genes Reguladores , Genes Reporter , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Luciferases/metabolismo , Melanócitos/metabolismo , Fator de Transcrição PAX3 , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Pigmentação da Pele/genética , Pigmentação da Pele/fisiologia , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/genética , Raios Ultravioleta
7.
Mol Carcinog ; 54(10): 1181-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24976598

RESUMO

Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC.


Assuntos
Actinas/genética , Junções Aderentes/genética , Adesão Celular/genética , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas ras/genética , Junções Aderentes/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , RNA Mensageiro/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Quinases Associadas a rho/genética
8.
Exp Dermatol ; 24(2): 81-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24980626

RESUMO

Fyn, a member of the Src family kinases (SFKs), has been shown to play important yet contradictory roles in keratinocyte (KC) adhesion. During KC differentiation, physiological activation of Fyn results in the formation of adherens junctions, recruiting junctional components and inducing signaling pathways that control the differentiation program. However, in KC transformation and oncogenesis, increased Fyn activity has been implicated in the dissolution of adhesion structures and an increased migratory phenotype. Fyn activity is also associated with both the formation and dissolution of focal adhesions, and to a lesser extent hemidesmosomes and desmosomes. This viewpoint article aims to reconcile these disparate bodies of literature regarding Fyn's role in cell-cell and cell-matrix adhesion by proposing several alternative, testable hypotheses that unify Fyn's fractured functions.


Assuntos
Regulação da Expressão Gênica , Queratinócitos/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Junções Aderentes/metabolismo , Animais , Adesão Celular , Comunicação Celular , Diferenciação Celular , Movimento Celular , Humanos , Queratinócitos/citologia , Fenótipo , Ligação Proteica , Transdução de Sinais
9.
Mol Pharmacol ; 82(3): 428-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22653970

RESUMO

Mutations that inhibit Kv11.1 ion channel activity contribute to abnormalities of cardiac repolarization that can lead to long QT2 (LQT2) cardiac arrhythmias and sudden death. However, for most of these mutations, nothing is known about the molecular mechanism linking Kv11.1 malfunction to cardiac death. We have previously demonstrated that disease-related mutations that create consensus sites for kinases on ion channels can dramatically change ion channel activity. Here, we show that a LQT2-associated mutation can inhibit Kv11.1 ion channel activity by perturbing a consensus site for the Ser/Thr protein kinase C α (PKCα). We first reveal by mass spectrometry analysis that Ser890 of the Kv11.1 ion channel is phosphorylated. Then, we demonstrate by a phospho-detection immunoassay combined with genetic manipulation that PKCα phosphorylates Ser890. Furthermore, we show that Ser890 phosphorylation is associated with an increase in Kv11.1 membrane density with alteration of recovery from inactivation. In addition, a newly discovered and as yet uncharacterized LQT2-associated nonsynonymous single nucleotide polymorphism 2660 G→A within the human ether-á-go-go-related gene 1 coding sequence, which replaces arginine 887 with a histidine residue (R887H), strongly inhibits PKCα-dependent phosphorylation of residue Ser890 on Kv11.1, and ultimately inhibits surface expression and current density. Taken together, our data provide a functional link between this channel mutation and LQT2.


Assuntos
Sequência Consenso , Canais de Potássio Éter-A-Go-Go/genética , Canais Iônicos/genética , Síndrome do QT Longo/genética , Mutação , Proteína Quinase C-alfa/genética , Animais , Células CHO , Células Cultivadas , Cricetinae , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Canais Iônicos/metabolismo , Síndrome do QT Longo/metabolismo , Fosforilação/genética , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/metabolismo , Proteólise , Relação Estrutura-Atividade
10.
FASEB J ; 25(3): 990-1001, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21156808

RESUMO

Darier's disease (DD) is an inherited autosomal-dominant skin disorder characterized histologically by loss of adhesion between keratinocytes. DD is typically caused by mutations in sarcoendoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), a major regulator of intracellular Ca(2+) homeostasis in the skin. However, a defined role for SERCA2 in regulating intercellular adhesion remains poorly understood. We found that diminution of SERCA2 function by pharmacological inhibition or siRNA silencing in multiple human epidermal-derived cell lines was sufficient to disrupt desmosome assembly and weaken intercellular adhesive strength. Specifically, SERCA2-deficient cells exhibited up to a 60% reduction in border translocation of desmoplakin (DP), the desmosomal cytolinker protein necessary for intermediate filament (IF) anchorage to sites of robust cell-cell adhesion. In addition, loss of SERCA2 impaired the membrane translocation of protein kinase C α (PKCα), a known regulator of DP-IF association and desmosome assembly, to the plasma membrane by up to 70%. Exogenous activation of PKCα in SERCA2-deficient cells was sufficient to rescue the defective DP localization, desmosome assembly, and intercellular adhesive strength to levels comparable to controls. Our findings indicate that SERCA2-deficiency is sufficient to impede desmosome assembly and weaken intercellular adhesive strength via a PKCα-dependent mechanism, implicating SERCA2 as a novel regulator of PKCα signaling.


Assuntos
Doença de Darier/metabolismo , Desmoplaquinas/metabolismo , Proteína Quinase C-alfa/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia , Cálcio/metabolismo , Carcinoma de Células Escamosas , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Doença de Darier/patologia , Desmossomos/metabolismo , Desmossomos/patologia , Humanos , Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Neoplasias Bucais , RNA Interferente Pequeno , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
11.
Stem Cell Reports ; 17(6): 1428-1441, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35561683

RESUMO

Receptor-interacting protein kinase 3 (Ripk3) is one of the critical mediators of inflammatory cytokine-stimulated signaling. Here we show that Ripk3 signaling selectively regulates both the number and the function of hematopoietic stem cells (HSCs) during stress conditions. Ripk3 signaling is not required for normal homeostatic hematopoiesis. However, in response to serial transplantation, inactivation of Ripk3 signaling prevents stress-induced HSC exhaustion and functional HSC attenuation, while in response to fractionated low doses of ionizing radiation (IR), inactivation of Ripk3 signaling accelerates leukemia/lymphoma development. In both situations, Ripk3 signaling is primarily stimulated by tumor necrosis factor-α. Activated Ripk3 signaling promotes the elimination of HSCs during serial transplantation and pre-leukemia stem cells (pre-LSCs) during fractionated IR by inducing Mlkl-dependent necroptosis. Activated Ripk3 signaling also attenuates HSC functioning and represses a pre-LSC-to-LSC transformation by promoting Mlkl-independent senescence. Furthermore, we demonstrate that Ripk3 signaling induces senescence in HSCs and pre-LSCs by attenuating ISR-mediated mitochondrial quality control.


Assuntos
Leucemia Induzida por Radiação , Animais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Necrose/metabolismo , Necrose/patologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 285(3): 1879-87, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19917613

RESUMO

Protein kinase Cdelta (PKCdelta) is an essential component of the intrinsic apoptotic program. Following DNA damage, such as exposure to UV radiation, PKCdelta is cleaved in a caspase-dependent manner, generating a constitutively active catalytic fragment (PKCdelta-cat), which is necessary and sufficient for keratinocyte apoptosis. We found that in addition to inducing apoptosis, expression of PKCdelta-cat caused a pronounced G(2)/M cell cycle arrest in both primary human keratinocytes and immortalized HaCaT cells. Consistent with a G(2)/M arrest, PKCdelta-cat induced phosphorylation of Cdk1 (Tyr(15)), a critical event in the G(2)/M checkpoint. Treatment with the ATM/ATR inhibitor caffeine was unable to prevent PKCdelta-cat-induced G(2)/M arrest, suggesting that PKCdelta-cat is functioning downstream of ATM/ATR in the G(2)/M checkpoint. To better understand the role of PKCdelta and PKCdelta-cat in the cell cycle response to DNA damage, we exposed wild-type and PKCdelta null mouse embryonic fibroblasts (MEFs) to UV radiation. Wild-type MEFs underwent a pronounced G(2)/M arrest, Cdk1 phosphorylation, and induction of apoptosis following UV exposure, whereas PKCdelta null MEFs were resistant to these effects. Expression of PKCdelta-green fluorescent protein, but not caspase-resistant or kinase-inactive PKCdelta, was able to restore G(2)/M checkpoint integrity in PKCdelta null MEFs. The function of PKCdelta in the DNA damage-induced G(2)/M cell cycle checkpoint may be a critical component of its tumor suppressor function.


Assuntos
Domínio Catalítico , Divisão Celular/fisiologia , Dano ao DNA , Fase G2/fisiologia , Proteína Quinase C-delta/química , Proteína Quinase C-delta/metabolismo , Animais , Biocatálise , Divisão Celular/efeitos da radiação , Linhagem Celular , Fase G2/efeitos da radiação , Humanos , Recém-Nascido , Camundongos , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Raios Ultravioleta/efeitos adversos
13.
Mol Carcinog ; 50(5): 346-52, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21480388

RESUMO

Src family kinases (SFKs) are frequently over-expressed and/or activated in human cancers, and play key roles in cancer cell invasion, metastasis, proliferation, survival, and angiogenesis. Allosteric activation of SFKs occurs through well-defined post-translational mechanisms, however the SFK member Fyn is over-expressed in multiple human cancers (prostate, melanoma, pancreatic, glioma, chronic myelogenous leukemia) and the mechanism of increased Fyn expression is unclear. Since activation of Ras oncogenes is a common oncogenic event leading to the activation of multiple effector pathways, we explored if Ras could induce Fyn expression. Retroviral transduction of the human keratinocyte cell line HaCaT with oncogenic H-Ras dramatically up-regulated Fyn mRNA (>100-fold, P < 0.001), protein, and kinase activity without affecting Src levels or activity. Activation of Akt, but not MAPK or EGFR, was necessary and sufficient for induction of Fyn by H-Ras. Expression of active Fyn was sufficient to increase HaCaT cell migration and invasion, and the enhanced migration and invasion induced by H-Ras could be significantly blocked (70% reduction, P < 0.01) by knockdown of Fyn with a specific siRNA or inhibition of SFKs with PP2. In addition, expression of Fyn in MDA-MB-231 breast cancer cells was dependent on PI3K activity and was involved in their invasive phenotype. Thus, the Ras/PI3K/Akt pathway can account for Fyn over-expression in cancers, and Fyn is a critical mediator of the Ras-stimulated invasive cell phenotype. These results support the development of therapeutic strategies targeting Akt/Fyn pathway to block migration and invasion of tumor cells.


Assuntos
Movimento Celular/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Pirimidinas/farmacologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
14.
Am J Pathol ; 176(3): 1091-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20093486

RESUMO

Protein kinase C delta (PKC-delta) protein levels are frequently low in chemically and UV-induced mouse skin tumors as well as in human cutaneous squamous cell carcinomas (SCCs). Furthermore, overexpression of PKC-delta in human SCC lines and mouse epidermis is sufficient to induce apoptosis and suppress tumorigenicity, making PKC-delta a potential tumor suppressor gene for SCCs. Here we report that PKC-delta is lost in human SCCs at the transcriptional level. We used laser capture microdissection to isolate cells from three normal human epidermis and 14 human SCCs with low PKC-delta protein. Analysis by quantitative reverse transcription-PCR revealed that PKC-delta RNA was reduced an average of 90% in the SCCs tested, consistent with PKC-delta down-regulation at the protein level. Analysis of DNA from nine of the same tumors revealed that PKC-delta gene was deleted in only one tumor. In addition, Ras-transformed human keratinocytes, which have selective down-regulation of PKC-delta at both protein and mRNA levels, had significantly repressed human PKC-delta promoter activity. Together, these results indicate that PKC-delta gene expression is suppressed in human SCCs, probably via transcription repression. Our results have implications for the development of topical therapeutic strategies to trigger the re-expression of pro-apoptotic PKC-delta to induce apoptosis in SCCs.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Lasers , Microdissecção , Proteína Quinase C-delta/genética , Neoplasias Cutâneas/enzimologia , Animais , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Deleção de Genes , Genes ras , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , Camundongos , Proteína Quinase C-delta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Neoplasias Cutâneas/genética
15.
Cell Rep ; 34(8): 108765, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626345

RESUMO

Hepatocellular carcinoma (HCC) remains one of the deadliest malignancies worldwide. One major obstacle to treatment is a lack of effective molecular-targeted therapies. In this study, we find that EphA2 expression and signaling are enriched in human HCC and associated with poor prognosis. Loss of EphA2 suppresses the initiation and growth of HCC both in vitro and in vivo. Furthermore, CRISPR/CAS9-mediated EphA2 inhibition significantly delays tumor development in a genetically engineered murine model of HCC. Mechanistically, we discover that targeting EphA2 suppresses both AKT and JAK1/STAT3 signaling, two separate oncogenic pathways in HCC. We also identify a small molecule kinase inhibitor of EphA2 that suppresses tumor progression in a murine HCC model. Together, our results suggest EphA2 as a promising therapeutic target for HCC.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Janus Quinase 1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA2/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1/genética , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Niacinamida/farmacologia , Fosforilação , Receptor EphA2/genética , Receptor EphA2/metabolismo , Estudos Retrospectivos , Fator de Transcrição STAT3/genética , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Exp Cell Res ; 315(1): 39-49, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18950621

RESUMO

p120-catenin (p120) is required for cadherin stability and is thought to have a central role in modulating cell-cell adhesion. Several lines of evidence suggest that S/T phosphorylation may regulate p120 activity, but the upstream kinases involved have not been established, nor has a discreet measurable function been assigned to an individual site. To approach these issues, we have generated p120 phospho-specific monoclonal antibodies to several individual phosphorylation sites and are using them to pinpoint upstream kinases and signaling pathways that control p120 activity. Protein Kinase C (PKC) has been implicated as a signaling intermediate in several cadherin-associated cellular activities. Signaling events that activate PKC induce rapid phosphorylation at p120 Serine 879 (S879), suggesting that p120 activity is regulated, in part, by one or more PKC isoforms. Here, we find that physiologic activation of a G-protein coupled receptor (i.e., endothelin receptor), as well as several Receptor Tyrosine Kinases, induce rapid and robust p120 phosphorylation at S879, suggesting that these pathways crosstalk to cadherin complexes via p120. Using Va2 cells and PDGF stimulation, we show for the first time that PDGFR-mediated phosphorylation at this site is dependent on PKCalpha, a conventional PKC isoform implicated previously in disruption of adherens junctions.


Assuntos
Moléculas de Adesão Celular/metabolismo , Fosfoproteínas/metabolismo , Fosfosserina/metabolismo , Proteína Quinase C-alfa/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Cateninas , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Isoenzimas/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , delta Catenina
17.
Cancer Res ; 66(14): 7050-8, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16849550

RESUMO

EphA2 receptor tyrosine kinase is frequently overexpressed in different human cancers, suggesting that it may promote tumor development and progression. However, evidence also exists that EphA2 may possess antitumorigenic properties, raising a critical question on the role of EphA2 kinase in tumorigenesis in vivo. We report here that deletion of EphA2 in mouse led to markedly enhanced susceptibility to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) two-stage skin carcinogenesis. EphA2-null mice developed skin tumors with an increased frequency and shortened latency. Moreover, tumors in homozygous knockout mice grew faster and were twice as likely to show invasive malignant progression. Haploinsufficiency of EphA2 caused an intermediate phenotype in tumor development but had little effects on invasive progression. EphA2 and ephrin-A1 exhibited compartmentalized expression pattern in mouse skin that localized EphA2/ephrin-A1 interactions to the basal layer of epidermis, which was disrupted in tumors. Loss of EphA2 increased tumor cell proliferation, whereas apoptosis was not affected. In vitro, treatment of primary keratinocytes from wild-type mice with ephrin-A1 suppressed cell proliferation and inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) activities. Both effects were abolished in EphA2-null keratinocytes, suggesting that loss of ERK inhibition by EphA2 may be one of the contributing mechanisms for increased tumor susceptibility. Interestingly, despite its tumor suppressive function, EphA2 was overexpressed in skin tumors compared with surrounding normal skin in wild-type mice, similar to the observations in human cancers. EphA2 overexpression may represent a compensatory feedback mechanism during tumorigenesis. Together, these results show that EphA2 is a novel tumor suppressor gene in mammalian skin.


Assuntos
Transformação Celular Neoplásica/metabolismo , Receptor EphA2/deficiência , Neoplasias Cutâneas/enzimologia , Pele/enzimologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinógenos , Processos de Crescimento Celular/fisiologia , Ativação Enzimática , Efrina-A1/biossíntese , Efrina-A1/genética , Efrina-A1/farmacologia , Feminino , Predisposição Genética para Doença , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor EphA2/biossíntese , Receptor EphA2/genética , Pele/efeitos dos fármacos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol
18.
Hepatol Commun ; 2(6): 732-746, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29881824

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common primary cancer and second largest cause of cancer-related death worldwide. The first-line oral chemotherapeutic agent sorafenib only increases survival in patients with advanced HCC by less than 3 months. Most patients with advanced HCC have shown limited response rates and survival benefits with sorafenib. Although sorafenib is an inhibitor of multiple kinases, including serine/threonine-protein kinase c-Raf, serine/threonine-protein kinase B-Raf, vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, and platelet-derived growth factor receptor ß, HCC cells are able to escape from sorafenib treatment using other pathways that the drug insufficiently inhibits. The aim of this study was to identify and target survival and proliferation pathways that enable HCC to escape the antitumor activity of sorafenib. We found that insulin-like growth factor 1 receptor (IGF1R) remains activated in HCC cells treated with sorafenib. Knockdown of IGF1R sensitizes HCC cells to sorafenib treatment and decreases protein kinase B (AKT) activation. Overexpression of constitutively activated AKT reverses the effect of knockdown of IGF1R in sensitizing HCC cells to treatment with sorafenib. Further, we found that ceritinib, a drug approved by the U.S. Food and Drug Administration for treatment of non-small cell lung cancer, effectively inhibits the IGF1R/AKT pathway and enhances the inhibitory efficacy of sorafenib in human HCC cell growth and survival in vitro, in a xenograft mouse model and in the c-Met/ß-catenin-driven HCC mouse model. Conclusion: Our study provides a biochemical basis for evaluation of a new combination treatment that includes IGF1R inhibitors, such as ceritinib and sorafenib, in patients with HCC. (Hepatology Communications 2018;2:732-746).

19.
Oncotarget ; 8(49): 86799-86815, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156836

RESUMO

BRCA1 is an important player in the DNA damage response signaling, and its deficiency results in genomic instability. A complete loss or significantly reduced BRCA1 protein expression is often found in sporadic breast cancer cases despite the absence of genetic or epigenetic aberrations, suggesting the existence of other regulatory mechanisms controlling BRCA1 protein expression. Herein, we demonstrate that Fyn-related kinase (Frk)/Rak plays an important role in maintaining genomic stability, possibly in part through positively regulating BRCA1 protein stability and function via tyrosine phosphorylation on BRCA1 Tyr1552. In addition, Rak deficiency confers cellular sensitivity to DNA damaging agents and poly(ADP-ribose) polymerase (PARP) inhibitors. Overall, our findings highlight a critical role of Rak in the maintenance of genomic stability, at least in part, through protecting BRCA1 and provide novel treatment strategies for patients with breast tumors lacking Rak.

20.
Oncogene ; 24(34): 5299-312, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-15940268

RESUMO

Ultraviolet (UV) light exposure is a common cause of epithelial-derived skin cancers, and the epidermal response to UV-light has been extensively studied using both mouse models and cultured human keratinocytes (KCs). Elimination of cells with UV-induced DNA damage via apoptosis provides a powerful mechanism to minimize retention or expansion of genetically abnormal cells. This cell editing function has largely been ascribed to the biological role of the p53 tumor suppressor gene, as mutations or deletions involving p53 have been linked to skin cancer development. Rather than introducing mutations, or using cells with complete loss of wild-type p53, we used an siRNA-based approach to knockdown, but not eliminate, p53 levels in primary cultures of human KCs followed by UV-irradiation. Surprisingly, when p53 levels were reduced by 50-80% the apoptosis induced by exposure to UV-light was accelerated and markedly enhanced (two- to three- fold) compared to control siRNA treated KCs. The p53 siRNA treated KCs were characterized by elevated E2F-1 levels accompanied by accelerated elimination of the Mcl-1 and Bcl-x(L) antiapoptotic proteins, as well as enhanced Bax oligomerization. Forced overexpression of either Mcl-1 or Bcl-x(L) reduced the UV-light enhanced apoptotic response in p53 siRNA treated KCs. We conclude that p53 not only can provide proapoptotic signals but also regulates a survival pathway influencing Mcl-1 and Bcl-x(L) levels. This overlooked survival function of p53 may explain previous paradoxical responses noted by investigators using p53 heterozygous and knockout mouse models, and opens up the possibility that not all liaisons within the cell involving p53 necessarily represent fatal attractions.


Assuntos
Apoptose , Queratinócitos/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Raios Ultravioleta/efeitos adversos , Animais , Apoptose/efeitos da radiação , Sobrevivência Celular , Dano ao DNA , Regulação para Baixo , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Interferência de RNA , Regulação para Cima , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA