Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(4): 862-865, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958011

RESUMO

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Gana/epidemiologia , Evolução Biológica , Surtos de Doenças
2.
Arch Virol ; 165(4): 1003-1005, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32037490

RESUMO

We previously reported the VP4 and the VP7 genotypes of the first G6P[14] rotavirus strain (RVA/Human-wt/GHA/M0084/2010/G6P[14]) from the stool of an infant with diarrhoea in Ghana. In the current study, we obtained the complete genome sequences using Illumina MiSeq next-generation sequencing to enable us to determine the host species origin of the genes by phylogenetic analysis. The genotype constellation was G6-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3. Phylogenetic analysis showed that M0084 was a reassortant strain from RVAs of both artiodactyl and human host species origin. The level of sequence identity of the individual genes of M0084 to other sequences in the GenBank ranged from 95.2 to 99.5%; however, there was no single strain from the GenBank database with a complete genome sequence that was highly similar to that of M0084. To help trace the source of such unique gene pools being introduced into human RVAs, it will be useful to examine RVA sequences from potential reservoirs such as sheep and goats, which are common domestic animals in this locality.


Assuntos
Diarreia/virologia , Doenças das Cabras/virologia , Vírus Reordenados/isolamento & purificação , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/virologia , Rotavirus/isolamento & purificação , Doenças dos Ovinos/virologia , Animais , Diarreia/terapia , Fezes/virologia , Genoma Viral , Gana , Cabras , Sequenciamento de Nucleotídeos em Larga Escala , Hospitalização , Humanos , Lactente , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Rotavirus/classificação , Rotavirus/genética , Infecções por Rotavirus/terapia , Ovinos
3.
J Infect Dis ; 219(5): 746-749, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30357332

RESUMO

Rotaviruses bind to enterocytes in a genotype-specific manner via histo-blood group antigens (HBGAs), which are also detectable in saliva. We evaluated antirotavirus immunoglobulin A seroconversion ('vaccine take") among 166 Ghanaian infants after 2-3 doses of G1P[8] rotavirus vaccine during a vaccine trial, by HBGA status from saliva collected at age 4.1 years. Only secretor status was associated with seroconversion: 41% seroconversion for secretors vs 13% for nonsecretors; relative risk, 3.2 (95% confidence interval, 1.2-8.1; P = .016). Neither Lewis antigen nor salivary antigen blood type was associated with seroconversion. Likelihood of "take" for any particular rotavirus vaccine may differ across populations based on HBGAs.


Assuntos
Antígenos de Histocompatibilidade/análise , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Rotavirus/imunologia , Soroconversão , Pré-Escolar , Feminino , Genótipo , Gana , Humanos , Lactente , Masculino , Vacinas contra Rotavirus/administração & dosagem , Saliva/química
4.
J Med Virol ; 91(11): 2025-2028, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31286526

RESUMO

Group A Rotaviruses (RVAs) are the most important etiological agents of acute gastroenteritis (AGE) in children less than 5 years of age. Mortality resulting from RVA gastroenteritis is higher in developing countries than in developed ones, causing a huge public health burden in global regions like Africa and South-East Asia. This study reports RVA genotypes detected in Ashaiman, Greater Accra Region, Ghana, in the postvaccine introduction era for the period 2014-2016. Stool samples were collected from children less than 5 years of age who visited Ashaiman Polyclinic with AGE from November 2014 to May 2015 and from December 2015 to June 2016. The samples were tested by enzyme immunoassay (EIA), and one-step multiplex reverse transcription polymerase chain reaction was performed on the EIA positive samples for gel-based binomial genotyping. Of the 369 stool samples collected from children with AGE, 145 (39%) tested positive by EIA. Five VP7 (G1, G3, G9, G10, and G12) and three VP4 (P[4], P[6] and P[8]) genotypes were detected. Eight G/P combinations were identified of which, G3P[6], G12P[8], G1P[8], and G9P[4] were the most prevalent and responsible for 93 (68%) of the AGE cases, and seven mixed-types were detected which represented 8% of the RVA cases. High prevalence, diversity, and mixed-types of RVAs were detected from Ashaiman with the emergence of unusual genotypes.


Assuntos
Fezes/virologia , Gastroenterite/virologia , Genótipo , Infecções por Rotavirus/epidemiologia , Rotavirus/genética , Animais , Pré-Escolar , Gastroenterite/epidemiologia , Gana/epidemiologia , Humanos , Lactente , Filogenia , Prevalência , RNA Viral/genética , Infecções por Rotavirus/transmissão , Infecções por Rotavirus/virologia , Análise de Sequência de DNA , Zoonoses/epidemiologia , Zoonoses/virologia
6.
J Infect Dis ; 216(2): 220-227, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28838152

RESUMO

Background: The etiology of acute watery diarrhea remains poorly characterized, particularly after rotavirus vaccine introduction. Methods: We performed quantitative polymerase chain reaction for multiple enteropathogens on 878 acute watery diarrheal stools sampled from 14643 episodes captured by surveillance of children <5 years of age during 2013-2014 from 16 countries. We used previously developed models of the association between pathogen quantity and diarrhea to calculate pathogen-specific weighted attributable fractions (AFs). Results: Rotavirus remained the leading etiology (overall weighted AF, 40.3% [95% confidence interval {CI}, 37.6%-44.3%]), though the AF was substantially lower in the Americas (AF, 12.2 [95% CI, 8.9-15.6]), based on samples from a country with universal rotavirus vaccination. Norovirus GII (AF, 6.2 [95% CI, 2.8-9.2]), Cryptosporidium (AF, 5.8 [95% CI, 4.0-7.6]), Shigella (AF, 4.7 [95% CI, 2.8-6.9]), heat-stable enterotoxin-producing Escherichia coli (ST-ETEC) (AF, 4.2 [95% CI, 2.0-6.1]), and adenovirus 40/41 (AF, 4.2 [95% CI, 2.9-5.5]) were also important. In the Africa Region, the rotavirus AF declined from 54.8% (95% CI, 48.3%-61.5%) in rotavirus vaccine age-ineligible children to 20.0% (95% CI, 12.4%-30.4%) in age-eligible children. Conclusions: Rotavirus remained the leading etiology of acute watery diarrhea despite a clear impact of rotavirus vaccine introduction. Norovirus GII, Cryptosporidium, Shigella, ST-ETEC, and adenovirus 40/41 were also important. Prospective surveillance can help identify priorities for further reducing the burden of diarrhea.


Assuntos
Diarreia/epidemiologia , Diarreia/microbiologia , Diarreia/virologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/uso terapêutico , África/epidemiologia , Ásia/epidemiologia , Brasil/epidemiologia , Pré-Escolar , Fezes/microbiologia , Fezes/virologia , Feminino , Saúde Global , Humanos , Lactente , Modelos Logísticos , Masculino , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Organização Mundial da Saúde
7.
Virol J ; 13(1): 183, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27832798

RESUMO

BACKGROUND: Rotaviruses with G6P[14] specificity are mostly isolated in cattle and have been established as a rare cause of gastroenteritis in humans. This study reports the first detection of G6P[14] rotavirus strain in Ghana from the stool of an infant during a hospital-based rotavirus surveillance study in 2010. METHODS: Viral RNA was extracted and rotavirus VP7 and VP4 genes amplified by one step RT-PCR using gene-specific primers. The DNA was purified, sequenced and genotypes determined using BLAST and RotaC v2.0. Phylogenetic tree was constructed using maximum likelihood method in MEGA v6.06 software and statistically supported by bootstrapping with 1000 replicates. Phylogenetic distances were calculated using the Kimura-2 parameter model. RESULTS: The study strain, GHA-M0084/2010 was characterised as G6P[14]. The VP7 gene of the Ghanaian strain clustered in G6 lineage-III together with artiodactyl and human rotavirus (HRV) strains. It exhibited the highest nucleotide (88.1 %) and amino acid (86.9 %) sequence identity with Belgian HRV strain, B10925. The VP8* fragment of the VP4 gene was closely related to HRV strains detected in France, Italy, Spain and Belgium. It exhibited the strongest nucleotide sequence identity (87.9 %) with HRV strains, PA169 and PR/1300 (Italy) and the strongest amino acid sequence identity (89.3 %) with HRV strain R2775/FRA/07 (France). CONCLUSION: The study reports the first detection of G6P[14] HRV strain in an infant in Ghana. The detection of G6P[14], an unusual strain pre-vaccine introduction in Ghana, suggests a potential compromise of vaccine effectiveness and indicates the necessity for continuous surveillance in the post vaccine era.


Assuntos
Diarreia/virologia , Genótipo , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/isolamento & purificação , Animais , Análise por Conglomerados , Biologia Computacional , Fezes/virologia , Gana , Humanos , Lactente , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rotavirus/genética , Análise de Sequência de DNA
8.
Virol J ; 13: 69, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103227

RESUMO

BACKGROUND: Rotaviruses with the P[8] genotype have been associated with majority of infections. Recent improvements in molecular diagnostics have delineated the P[8] genotype into P[8]a and P[8]b subtypes. P[8]a is the previously known P[8] genotype which is common whilst P[8]b subtype also known as OP354-like strain is genetically distinct, rarely detected and reported from a few countries. In a previous study, the P-types could not be determined for 80 RVA-positive samples by conventional RT-PCR genotyping methods with the recommended pool of P-genotype specific primers used in the WHO Regional Rotavirus Reference Laboratory in Ghana. The present study employed sequence-dependent cDNA amplification method to genotype previously non-typeable P-types. METHODS: Viral RNAs were extracted and rotavirus VP4 genes amplified by one step RT-PCR using gene specific primers. PCR amplicons were purified, sequenced and sequences aligned with cognate gene sequences available in GenBank using the ClustalW algorithm. Phylogenetic analysis was performed using the Neighbour-Joining method in MEGA v6.06 software. Phylogenetic tree was statistically supported by bootstrapping with 1000 replicates, and distances calculated using the Kimura-2 parameter model. RESULTS: Of the 80 RVA-positive samples, 57 were successfully sequenced and characterized. Forty-eight of these were identified as P[8] strains of which 5 were characterized as the rare P[8]b subtype. Phylogenetic analysis of the VP8* fragment of the VP4 genes of these P[8]b strains revealed a close relationship with prototype OP354-like P[8]b strain and P[8]b strains of Russian and South African P[8]b origin. CONCLUSION: The study highlights the importance of regularly updating the primers employed for molecular typing of rotaviruses.


Assuntos
Diarreia/virologia , Genótipo , Técnicas de Genotipagem/métodos , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/isolamento & purificação , Pré-Escolar , Primers do DNA/genética , Gana , Humanos , Lactente , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rotavirus/genética , Análise de Sequência de DNA
9.
Viruses ; 15(12)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140694

RESUMO

Rotavirus (RVA) is a leading cause of childhood gastroenteritis. RVA vaccines have reduced the global disease burden; however, the emergence of intergenogroup reassortant strains is a growing concern. During surveillance in Ghana, we observed the emergence of G9P[4] RVA strains in the fourth year after RVA vaccine introduction. To investigate whether Ghanaian G9P[4] strains also exhibited the DS-1-like backbone, as seen in reassortant G1/G3/G8/G9 strains found in other countries in recent years, this study determined the whole genome sequences of fifteen G9P[4] and two G2P[4] RVA strains detected during 2015-2016. The results reveal that the Ghanaian G9P[4] strains exhibited a double-reassortant genotype, with G9-VP7 and E6-NSP4 genes on a DS-1-like backbone (G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2). Although they shared a common ancestor with G9P[4] DS-1-like strains from other countries, further intra-reassortment events were observed among the original G9P[4] and co-circulating strains in Ghana. In the post-vaccine era, there were significant changes in the distribution of RVA genotype constellations, with unique strains emerging, indicating an impact beyond natural cyclical fluctuations. However, reassortant strains may exhibit instability and have a limited duration of appearance. Current vaccines have shown efficacy against DS-1-like strains; however, ongoing surveillance in fully vaccinated children is crucial for addressing concerns about long-term effectiveness.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Humanos , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/genética , Gana/epidemiologia , Genoma Viral , Vírus Reordenados/genética , Filogenia , Rotavirus/genética , Genótipo
10.
Virus Evol ; 9(1): vead030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305707

RESUMO

G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, 5 years after the introduction of the Rotarix rotavirus vaccine. Here, we analysed representative twenty-seven whole genome sequences (G3P[4], n = 20; G3P[6], n = 1; and G3P[8], n = 6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each ribonucleic acid (RNA) segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1, and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease-burden settings to inform disease prevention and control.

11.
PLOS Glob Public Health ; 3(11): e0001358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015834

RESUMO

Rotavirus is the most common pathogen causing pediatric diarrhea and an important cause of morbidity and mortality in low- and middle-income countries. Previous evidence suggests that the introduction of rotavirus vaccines in national immunization schedules resulted in dramatic declines in disease burden but may also be changing the rotavirus genetic landscape and driving the emergence of new genotypes. We report genotype data of more than 16,000 rotavirus isolates from 40 countries participating in the Global Rotavirus Surveillance Network. Data from a convenience sample of children under five years of age hospitalized with acute watery diarrhea who tested positive for rotavirus were included. Country results were weighted by their estimated rotavirus disease burden to estimate regional genotype distributions. Globally, the most frequent genotypes identified after weighting were G1P[8] (31%), G1P[6] (8%) and G3P[8] (8%). Genotypes varied across WHO Regions and between countries that had and had not introduced rotavirus vaccine. G1P[8] was less frequent among African (36 vs 20%) and European (33 vs 8%) countries that had introduced rotavirus vaccines as compared to countries that had not introduced. Our results describe differences in the distribution of the most common rotavirus genotypes in children with diarrhea in low- and middle-income countries. G1P[8] was less frequent in countries that had introduced the rotavirus vaccine while different strains are emerging or re-emerging in different regions.

12.
Cell Host Microbe ; 30(1): 110-123.e5, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932985

RESUMO

Rotavirus vaccines (RVVs) have substantially diminished mortality from severe rotavirus (RV) gastroenteritis but are significantly less effective in low- and middle-income countries (LMICs), limiting their life-saving potential. The etiology of RVV's diminished effectiveness remains incompletely understood, but the enteric microbiota has been implicated in modulating immunity to RVVs. Here, we analyze the enteric microbiota in a longitudinal cohort of 122 Ghanaian infants, evaluated over the course of 3 Rotarix vaccinations between 6 and 15 weeks of age, to assess whether bacterial and viral populations are distinct between non-seroconverted and seroconverted infants. We identify bacterial taxa including Streptococcus and a poorly classified taxon in Enterobacteriaceae as positively correlating with seroconversion. In contrast, both bacteriophage diversity and detection of Enterovirus B and multiple novel cosaviruses are negatively associated with RVV seroconversion. These findings suggest that virome-RVV interference is an underappreciated cause of poor vaccine performance in LMICs.


Assuntos
Intestino Delgado/virologia , Infecções por Rotavirus/imunologia , Rotavirus/fisiologia , Viroma/fisiologia , Bactérias/classificação , Bacteriófagos , Estudos de Coortes , Coinfecção , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Gana , Humanos , Imunização , Lactente , Masculino , Metagenoma , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus , Soroconversão , Vacinação , Vacinas Atenuadas
13.
Microb Genom ; 8(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446251

RESUMO

The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology.


Assuntos
Infecções por Rotavirus , Rotavirus , Genótipo , Humanos , Filogenia , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , África do Sul , Proteínas Virais/genética
14.
BMJ Glob Health ; 7(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36660904

RESUMO

INTRODUCTION: Diarrhoea remains a leading cause of child morbidity and mortality. Systematically collected and analysed data on the aetiology of hospitalised diarrhoea in low-income and middle-income countries are needed to prioritise interventions. METHODS: We established the Global Pediatric Diarrhea Surveillance network, in which children under 5 years hospitalised with diarrhoea were enrolled at 33 sentinel surveillance hospitals in 28 low-income and middle-income countries. Randomly selected stool specimens were tested by quantitative PCR for 16 causes of diarrhoea. We estimated pathogen-specific attributable burdens of diarrhoeal hospitalisations and deaths. We incorporated country-level incidence to estimate the number of pathogen-specific deaths on a global scale. RESULTS: During 2017-2018, 29 502 diarrhoea hospitalisations were enrolled, of which 5465 were randomly selected and tested. Rotavirus was the leading cause of diarrhoea requiring hospitalisation (attributable fraction (AF) 33.3%; 95% CI 27.7 to 40.3), followed by Shigella (9.7%; 95% CI 7.7 to 11.6), norovirus (6.5%; 95% CI 5.4 to 7.6) and adenovirus 40/41 (5.5%; 95% CI 4.4 to 6.7). Rotavirus was the leading cause of hospitalised diarrhoea in all regions except the Americas, where the leading aetiologies were Shigella (19.2%; 95% CI 11.4 to 28.1) and norovirus (22.2%; 95% CI 17.5 to 27.9) in Central and South America, respectively. The proportion of hospitalisations attributable to rotavirus was approximately 50% lower in sites that had introduced rotavirus vaccine (AF 20.8%; 95% CI 18.0 to 24.1) compared with sites that had not (42.1%; 95% CI 33.2 to 53.4). Globally, we estimated 208 009 annual rotavirus-attributable deaths (95% CI 169 561 to 259 216), 62 853 Shigella-attributable deaths (95% CI 48 656 to 78 805), 36 922 adenovirus 40/41-attributable deaths (95% CI 28 469 to 46 672) and 35 914 norovirus-attributable deaths (95% CI 27 258 to 46 516). CONCLUSIONS: Despite the substantial impact of rotavirus vaccine introduction, rotavirus remained the leading cause of paediatric diarrhoea hospitalisations. Improving the efficacy and coverage of rotavirus vaccination and prioritising interventions against Shigella, norovirus and adenovirus could further reduce diarrhoea morbidity and mortality.


Assuntos
Vacinas contra Rotavirus , Humanos , Criança , Pré-Escolar , Incidência , Países em Desenvolvimento , Diarreia/epidemiologia , Diarreia/prevenção & controle , Hospitalização
15.
Vaccine ; 38(34): 5402-5407, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32561119

RESUMO

The University of the Free State - Next Generation Sequencing (NGS) Unit, Bloemfontein, South Africa, hosted a data and bioinformatics workshop from 19 to 22 June 2018. The workshop was coordinated by the African Enteric Viruses Genome Initiative (AEVGI) with support from the Bill & Melinda Gates Foundation. The event introduced technologies in NGS and data analysis with focus on the rotavirus (RV) genome. The workshop fostered interactions and networking between professionals, scientific experts, technicians and students. The courses provided an overview of RV diarrhoea and its burden in Africa, while highlighting the key resources and methodologies in NGS and advanced bioinformatics in deciphering vaccine impact. It was concluded that, despite the reported significant decline in RV associated-diarrhoea mortality and morbidity in Africa due to RV vaccine impact, the need for continuous surveillance and genomic characterization to better understand the ever-changing dynamics of RV strains is imperative.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Biologia Computacional , Humanos , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , África do Sul/epidemiologia
16.
Pathogens ; 9(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443835

RESUMO

Emergence of DS-1-like G1P[8] group A rotavirus (RVA) strains during post-rotavirus vaccination period has recently been reported in several countries. This study demonstrates, for the first time, rare atypical DS-1-like G1P[8] RVA strains that circulated in 2008 during pre-vaccine era in South Africa. Rotavirus positive samples were subjected to whole-genome sequencing. Two G1P[8] strains (RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1971/2008/G1P[8] and RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU1973/2008/G1P[8]) possessed a DS-1-like genome constellation background (I2-R2-C2-M2-A2-N2-T2-E2-H2). The outer VP4 and VP7 capsid genes of the two South African G1P[8] strains had the highest nucleotide (amino acid) nt (aa) identities of 99.6-99.9% (99.1-100%) with the VP4 and the VP7 genes of a locally circulating South African strain, RVA/Human-wt/ZAF/MRC-DPRU1039/2008/G1P[8]. All the internal backbone genes (VP1-VP3, VP6, and NSP1-NSP5) had the highest nt (aa) identities with cognate internal genes of another locally circulating South African strain, RVA/Human-wt/ZAF/MRC-DPRU2344/2008/G2P[6]. The two study strains emerged through reassortment mechanism involving locally circulating South African strains, as they were distinctly unrelated to other reported atypical G1P[8] strains. The identification of these G1P[8] double-gene reassortants during the pre-vaccination period strongly supports natural RVA evolutionary mechanisms of the RVA genome. There is a need to maintain long-term whole-genome surveillance to monitor such atypical strains.

17.
Viruses ; 12(11)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217894

RESUMO

Understanding the epidemiology of human norovirus infection in children within Ghana and the entire sub-Saharan African region, where future norovirus vaccines would have the greatest impact, is essential. We analyzed 1337 diarrheic stool samples collected from children <5 years from January 2008 to December 2017 and found 485 (36.2%) shedding the virus. GII.4 (54.1%), GII.3 (7.7%), GII.6 (5.3%), GII.17 (4.7%), and GII.5 (4.7%) were the most common norovirus genotypes. Although norovirus GII.4 remained the predominant capsid genotype throughout the study period, an increase in GII.6 and GII.3 capsid genotypes was observed in 2013 and 2014, respectively. The severity of clinical illness in children infected with GII.4 norovirus strains was similar to illness caused by non-GII.4 strains. Since the epidemiology of norovirus changes rapidly, establishment of systematic surveillance within sentinel sites across the country would enhance the monitoring of circulating norovirus strains and allow continuous understanding of norovirus infection in Ghana.


Assuntos
Infecções por Caliciviridae/epidemiologia , Gastroenterite/epidemiologia , Genótipo , Norovirus/genética , Infecções por Caliciviridae/diagnóstico , Pré-Escolar , Fezes/virologia , Feminino , Gastroenterite/virologia , Variação Genética , Gana/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Norovirus/classificação , Filogenia , Prevalência , Análise de Sequência de DNA , Eliminação de Partículas Virais
18.
Vaccines (Basel) ; 8(4)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066615

RESUMO

Rotavirus G1P[8] strains account for more than half of the group A rotavirus (RVA) infections in children under five years of age, globally. A total of 103 stool samples previously characterized as G1P[8] and collected seven years before and seven years after introducing the Rotarix® vaccine in South Africa were processed for whole-genome sequencing. All the strains analyzed had a Wa-like constellation (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). South African pre- and post-vaccine G1 strains were clustered in G1 lineage-I and II while the majority (84.2%) of the P[8] strains were grouped in P[8] lineage-III. Several amino acid sites across ten gene segments with the exception of VP7 were under positive selective pressure. Except for the N147D substitution in the antigenic site of eight post-vaccine G1 strains when compared to both Rotarix® and pre-vaccine strains, most of the amino acid substitutions in the antigenic regions of post-vaccine G1P[8] strains were already present during the pre-vaccine period. Therefore, Rotarix® did not appear to have an impact on the amino acid differences in the antigenic regions of South African post-vaccine G1P[8] strains. However, continued whole-genome surveillance of RVA strains to decipher genetic changes in the post-vaccine period remains imperative.

19.
PLoS One ; 14(5): e0217422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150425

RESUMO

Recent increase in the detection of unusual G1P[8], G3P[8], G8P[8], and G9P[4] Rotavirus A (RVA) strains bearing the DS-1-like constellation of the non-G, non-P genes (hereafter referred to as the genotype 2 backbone) requires better understanding of their evolutionary relationship. However, within a genotype, there is lack of a consensus lineage designation framework and a set of common sequences that can serve as references. Phylogenetic analyses were carried out on over 8,500 RVA genotype 2 genes systematically retrieved from the rotavirus database within the NCBI Virus Variation Resource. In line with previous designations, using pairwise comparison of cogent nucleotide sequences and stringent bootstrap support, reference lineages were defined. This study proposes a lineage framework and provides a dataset ranging from 34 to 145 sequences for each genotype 2 gene for orderly lineage designation of global genotype 2 genes of RVAs detected in human and animals. The framework identified five to 31 lineages depending on the gene. The least number of lineages (five to seven) were observed in genotypes A2 (NSP1), T2 (NSP3) and H2 (NSP5) which are limited to human RVA whereas the most number of lineages (31) was observed in genotype E2 (NSP4). Sharing of the same lineage constellations of the genotype 2 backbone genes between recently-emerging, unusual G1P[8], G3P[8], G8P[8] and G9P[4] reassortants and many contemporary G2P[4] strains provided strong support to the hypothesis that unusual genotype 2 strains originated primarily from reassortment events in the recent past involving contemporary G2P[4] strains as one parent and ordinary genotype 1 strains or animal RVA strains as the other. The lineage framework with selected reference sequences will help researchers to identify the lineage to which a given genotype 2 strain belongs, and trace the evolutionary history of common and unusual genotype 2 strains in circulation.


Assuntos
Evolução Molecular , Genes Virais/genética , RNA Viral/genética , Infecções por Rotavirus/virologia , Rotavirus/genética , Animais , Sequência de Bases/genética , Genótipo , Humanos , Filogenia , Infecções por Rotavirus/veterinária
20.
PLoS One ; 14(6): e0218348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199823

RESUMO

In 2010, the rare OP354-like P[8]b rotavirus subtype was detected in children less than 2 years old in Ghana. In this follow-up study, to provide insight into the evolutionary history of the genome of Ghanaian P[8]b strains RVA/Human-wt/GHA/GHDC949/2010/G9P[8] and RVA/Human-wt/GHA/GHM0094/2010/G9P[8] detected in an infant and a 7-month old child hospitalised for acute gastroenteritis, we sequenced the complete genome using both Sanger sequencing and Illumina MiSeq technology followed by phylogenetic analysis of the near-full length sequences. Both strains possessed the Wa-like/genotype 1 constellation G9P[8]b-I1-R1-C1-M1-A1-N1-T1-E1-H1. Sequence comparison and phylogenetic inference showed that both strains were identical at the lineage level throughout the 11 genome segments. Their VP7 sequences belonged to the major sub-lineage of the G9-lineage III whereas their VP4 sequences belonged to P[8]b cluster I. The VP7 and VP4 genes of the study strains were closely related to a Senegalese G9P[8]b strain detected in 2009. In the remaining nine genome segments, both strains consistently clustered together with Wa-like RVA strains possessing either P[8]a or P[8]b mostly of African RVA origin. The introduction of a P[8]b subtype VP4 gene into the stable Wa-like strain backbone may result in strains that might propagate easily in the human population, with a potential to become an important public health concern, especially because it is not certain if the monovalent rotavirus vaccine (Rotarix) used in Ghana will be efficacious against such strains. Our analysis of the full genomes of GHM0094 and GHDC949 adds to knowledge of the genetic make-up and evolutionary dynamics of P[8]b rotavirus strains.


Assuntos
Diarreia/virologia , Evolução Molecular , Genoma Viral , Genômica , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Variação Genética , Genômica/métodos , Genótipo , Gana , Humanos , Filogenia , Rotavirus/isolamento & purificação , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA