Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32649862

RESUMO

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
2.
J Biol Chem ; 299(12): 105409, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918802

RESUMO

Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.


Assuntos
Aves , Evolução Molecular , Longevidade , Animais , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Cistina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Fígado/metabolismo , Longevidade/genética , Aves/genética , Aves/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Seleção Genética
3.
J Biol Chem ; 299(12): 105416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918808

RESUMO

Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão , Transportador 1 de Aminoácidos Neutros Grandes , Estresse Fisiológico , Humanos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Galectina 3/metabolismo , Glicosilação , Células HeLa , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Polissacarídeos/metabolismo
4.
Cell ; 139(7): 1229-41, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064370

RESUMO

Genetic information flows from DNA to macromolecular structures-the dominant force in the molecular organization of life. However, recent work suggests that metabolite availability to the hexosamine and Golgi N-glycosylation pathways exerts control over the assembly of macromolecular complexes on the cell surface and, in this capacity, acts upstream of signaling and gene expression. The structure and number of N-glycans per protein molecule cooperate to regulate lectin binding and thereby the distribution of glycoproteins at the cell surface. Congenital disorders of glycosylation provide insight as extreme hypomorphisms, whereas milder deficiencies may encompass many common chronic conditions, including autoimmunity, metabolic syndrome, and aging.


Assuntos
Glicoproteínas de Membrana/metabolismo , Doenças Metabólicas/fisiopatologia , Polissacarídeos/metabolismo , Animais , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Polissacarídeos/química
5.
J Neuroinflammation ; 20(1): 209, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705084

RESUMO

BACKGROUND: In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS: An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS: Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS: Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.


Assuntos
Encefalite , Esclerose Múltipla , Humanos , Animais , Camundongos , Acetilglucosamina/uso terapêutico , Interleucina-17 , Acetato de Glatiramer , Interleucina-6 , Esclerose Múltipla/tratamento farmacológico , Inflamação/tratamento farmacológico , Citocinas
6.
J Biol Chem ; 295(51): 17413-17424, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453988

RESUMO

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.


Assuntos
Acetilglucosamina/farmacologia , Diferenciação Celular , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Células Precursoras de Oligodendrócitos/citologia , Acetilglucosamina/administração & dosagem , Acetilglucosamina/uso terapêutico , Administração Oral , Animais , Biomarcadores/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Endocitose , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
7.
PLoS Genet ; 14(4): e1007303, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649217

RESUMO

UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling.


Assuntos
Caenorhabditis elegans/fisiologia , Ácido Glutâmico/metabolismo , Movimento , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Neurônios Motores/fisiologia , Ubiquitina-Proteína Ligases/genética
8.
Trends Biochem Sci ; 40(11): 673-686, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26439532

RESUMO

Our attraction to precision and symmetry in everyday life must be put aside to appreciate how natural selection favors networks governed by weak interactions, multivalency, and proteins described as low complexity (LC) and/or intrinsically disordered (ID). Phosphorylation, ubiquitination, and glycosylation of proteins often act as weak docking sites for multivalent adaptor proteins in the formation of membrane-associated and soluble complexes that mediate information flow in cells. Multiple post-translational modification (PTM) sites together with LC and ID regions in proteins can mediate phase transition from soluble complexes to liquid droplets in the cytoplasm or tethering to the membrane. Although compositionally complex and highly dynamic, these systems display remarkable control of specificity, timing, and switch-like behavior in signaling pathways.


Assuntos
Proteínas/química , Glicosilação , Fosforilação , Ubiquitinação
9.
J Vasc Surg ; 69(1): 40-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579457

RESUMO

BACKGROUND: The usual location of thoracic blunt traumatic aortic injury (BTAI) is just distal to the left subclavian artery; however, injuries can also be found in other locations in the descending thoracic aorta (DTA). METHODS: This is a single-institution, retrospective study, using 74 consecutive BTAI in the DTA. The patients were separated into two groups based on the location of the injury. The proximal group included injuries within 5 cm of the left subclavian artery, whereas the distal group included injuries in the rest of the DTA. A total of 27 factors were compared. RESULTS: Between 2010 and July 2017, we identified 14 of 74 patients (19%) with BTAI in the distal zone. Females were 9 of the 14 (64%) in the distal zone group, whereas females were 16 of 60 (27%) in the proximal zone group (P < .012). Thoracic spine fractures occurred in 7 of the 14 patients (50%) with injuries at the distal zone, whereas they occurred in 12 of the 60 patients (20%) in the proximal zone group (P < .038). Eleven of the 14 distal zone injuries (79%) were grade 1 or 2 compared with 15 of 60 injuries (25%) at the proximal zone (P = .016). Only 2 of the 14 injuries (14%) in the distal zone required an endovascular repair as opposed to 39 of 60 (65%) in the proximal zone (P < .001). The mean hospital duration of stay in patients with BTAI at the distal zone was 8.5 days compared with 20.3 days for patients in the proximal zone group (P < .004). Mortality occurred in 5 of 14 patients (36%) in the distal zone group compared with 5 of 60 patients (8%) in the proximal zone group (P = .017). The odds of mortality from an injury in the distal zone were almost 6-fold greater than the odds of mortality from an injury in the proximal zone (odds ratio, 5.9; 95% confidence interval, 1.2-31.8). No mortalities were related to the BTAI itself. The association of location with mortality remained significant even after adjusting for other significant factors like Injury Severity Score and patient age. Patients who died from injuries in the distal zone had a shorter duration of stay (5 days vs 20 days; P = .0002). CONCLUSIONS: BTAI in the distal zone of DTA are associated with unique characteristics. They are (1) more frequently associated with thoracic spine fractures, (2) more common in women, (3) tend to be lower grade, (4) less likely to require intervention, and (5) seem to have a higher mortality owing to other associated traumatic injuries.


Assuntos
Aorta Torácica/lesões , Traumatismos Torácicos/etiologia , Lesões do Sistema Vascular/etiologia , Ferimentos não Penetrantes/etiologia , Adulto , Pontos de Referência Anatômicos , Aorta Torácica/diagnóstico por imagem , Aortografia/métodos , Angiografia por Tomografia Computadorizada , Feminino , Mortalidade Hospitalar , Humanos , Escala de Gravidade do Ferimento , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Artéria Subclávia/diagnóstico por imagem , Traumatismos Torácicos/diagnóstico por imagem , Traumatismos Torácicos/mortalidade , Traumatismos Torácicos/terapia , Fatores de Tempo , Lesões do Sistema Vascular/diagnóstico por imagem , Lesões do Sistema Vascular/mortalidade , Lesões do Sistema Vascular/terapia , Ferimentos não Penetrantes/diagnóstico por imagem , Ferimentos não Penetrantes/mortalidade , Ferimentos não Penetrantes/terapia
10.
Nature ; 499(7457): 166-71, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23846654

RESUMO

Cell-surface receptors frequently use scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr)-binding (PTB) domains. Using quantitative mass spectrometry, here we show that mammalian Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. After stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic or survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser 29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signalling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signalling information after EGF stimulation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Animais , Mama/citologia , Linhagem Celular , Células Epiteliais/citologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Proteína Adaptadora GRB2/deficiência , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Adaptadoras da Sinalização Shc/deficiência , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Fatores de Tempo
11.
Haematologica ; 103(11): 1925-1936, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30002126

RESUMO

Immune responses to factor VIII remain the greatest complication in the treatment of severe hemophilia A. Recent epidemiological evidence has highlighted that recombinant factor VIII produced in baby hamster kidney cells is more immunogenic than factor VIII produced in Chinese hamster ovary cells. Glycosylation differences have been hypothesized to influence the immunogenicity of these synthetic concentrates. In two hemophilia A mouse models, baby hamster kidney cell-derived factor VIII elicited a stronger immune response compared to Chinese hamster ovary cell-derived factor VIII. Furthermore, factor VIII produced in baby hamster kidney cells exhibited accelerated clearance from circulation independent of von Willebrand factor. Lectin and mass spectrometry analysis of total N-linked glycans revealed differences in high-mannose glycans, sialylation, and the occupancy of glycan sites. Factor VIII desialylation did not influence binding to murine splenocytes or dendritic cells, nor surface co-stimulatory molecule expression. We did, however, observe increased levels of immunoglobulin M specific to baby hamster kidney-derived factor VIII in naïve hemophilia A mice. De-N-glycosylation enhanced immunoglobulin M binding, suggesting that N-glycan occupancy masks epitopes. Elevated levels of immunoglobulin M and immunoglobulin G specific to baby hamster kidney-derived factor VIII were also observed in healthy individuals, and de-N-glycosylation increased immunoglobulin G binding. Collectively, our data suggest that factor VIII produced in baby hamster kidney cells is more immunogenic than that produced in Chinese hamster ovary cells, and that incomplete occupancy of N-linked glycosylation sites leads to the formation of immunoglobulin M- and immunoglobulin G-factor VIII immune complexes that contribute to the enhanced clearance and immunogenicity in these mouse models of hemophilia A.


Assuntos
Fator VIII , Hemofilia A , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Fator VIII/imunologia , Fator VIII/farmacologia , Feminino , Glicosilação , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Hemofilia A/imunologia , Hemofilia A/patologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
12.
BMC Biol ; 15(1): 61, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716093

RESUMO

BACKGROUND: In addition to DNA, gametes contribute epigenetic information in the form of histones and non-coding RNA. Epigenetic programs often respond to stressful environmental conditions and provide a heritable history of ancestral stress that allows for adaptation and propagation of the species. In the nematode C. elegans, defective epigenetic transmission often manifests as progressive germline mortality. We previously isolated sup-46 in a screen for suppressors of the hexosamine pathway gene mutant, gna-2(qa705). In this study, we examine the role of SUP-46 in stress resistance and progressive germline mortality. RESULTS: We identified SUP-46 as an HNRNPM family RNA-binding protein, and uncovered a highly novel role for SUP-46 in preventing paternally-mediated progressive germline mortality following mating. Proximity biotinylation profiling of human homologs (HNRNPM, MYEF2) identified proteins of ribonucleoprotein complexes previously shown to contain non-coding RNA. Like HNRNPM and MYEF2, SUP-46 was associated with multiple RNA granules, including stress granules, and also formed granules on active chromatin. SUP-46 depletion disrupted germ RNA granules and caused ectopic sperm, increased sperm transcripts, and chronic heat stress sensitivity. SUP-46 was also required for resistance to acute heat stress, and a conserved "MYEF2" motif was identified that was needed for stress resistance. CONCLUSIONS: In mammals, non-coding RNA from the sperm of stressed males has been shown to recapitulate paternal stress phenotypes in the offspring. Our results suggest that HNRNPM family proteins enable stress resistance and paternally-mediated epigenetic transmission that may be conserved across species.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Epigênese Genética , Células Germinativas/metabolismo , Canais de Potássio/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canais de Potássio/metabolismo , Estresse Fisiológico/genética
13.
Genes Dev ; 24(24): 2784-99, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21106670

RESUMO

Glucose and glutamine serve as the two primary carbon sources in proliferating cells, and uptake of both nutrients is directed by growth factor signaling. Although either glucose or glutamine can potentially support mitochondrial tricarboxylic acid (TCA) cycle integrity and ATP production, we found that glucose deprivation led to a marked reduction in glutamine uptake and progressive cellular atrophy in multiple mammalian cell types. Despite the continuous presence of growth factor and an abundant supply of extracellular glutamine, interleukin-3 (IL-3)-dependent cells were unable to maintain TCA cycle metabolite pools or receptor-dependent signal transduction when deprived of glucose. This was due at least in part to down-regulation of IL-3 receptor α (IL-3Rα) surface expression in the absence of glucose. Treatment of glucose-starved cells with N-acetylglucosamine (GlcNAc) to maintain hexosamine biosynthesis restored mitochondrial metabolism and cell growth by promoting IL-3-dependent glutamine uptake and metabolism. Thus, glucose metabolism through the hexosamine biosynthetic pathway is required to sustain sufficient growth factor signaling and glutamine uptake to support cell growth and survival.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Hexosaminas/biossíntese , Redes e Vias Metabólicas , Acetilglucosamina/farmacologia , Animais , Atrofia , Transporte Biológico , Sobrevivência Celular , Ciclo do Ácido Cítrico , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interleucina-3 , Camundongos , Transdução de Sinais
14.
Glycobiology ; 27(7): 595-598, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048482

RESUMO

Pedersen et al. (Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, et al. 2016. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 535: 376-381.) report that human serum levels of branched-chain amino acids (BCAA) and N-acetylglucosamine (GlcNAc) increase in proportion to insulin resistance. They focus on the microbiome and the contributing subset of microbe species, thereby demonstrating disease causality in mice. As either oral GlcNAc or BCAA in mice are known to increase insulin resistance and weight gain, we note that recently published molecular data argues for a cooperative interaction.


Assuntos
Resistência à Insulina , Acetilglucosamina , Aminoácidos de Cadeia Ramificada , Animais , Humanos , Insulina , Metaboloma , Camundongos
15.
J Cell Sci ; 128(13): 2213-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092931

RESUMO

Galectins are a family of widely expressed ß-galactoside-binding lectins in metazoans. The 15 mammalian galectins have either one or two conserved carbohydrate recognition domains (CRDs), with galectin-3 being able to pentamerize; they form complexes that crosslink glycosylated ligands to form a dynamic lattice. The galectin lattice regulates the diffusion, compartmentalization and endocytosis of plasma membrane glycoproteins and glycolipids. The galectin lattice also regulates the selection, activation and arrest of T cells, receptor kinase signaling and the functionality of membrane receptors, including the glucagon receptor, glucose and amino acid transporters, cadherins and integrins. The affinity of transmembrane glycoproteins to the galectin lattice is proportional to the number and branching of their N-glycans; with branching being mediated by Golgi N-acetylglucosaminyltransferase-branching enzymes and the supply of UDP-GlcNAc through metabolite flux through the hexosamine biosynthesis pathway. The relative affinities of glycoproteins for the galectin lattice depend on the activities of the Golgi enzymes that generate the epitopes of their ligands and, thus, provide a means to analyze biological function of lectins and of the 'glycome' more broadly.


Assuntos
Galectinas/metabolismo , Polímeros/metabolismo , Animais , Galectinas/química , Humanos , Imunidade , Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
16.
J Biol Chem ; 289(23): 15927-41, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24742675

RESUMO

Glucose homeostasis in mammals is dependent on the opposing actions of insulin and glucagon. The Golgi N-acetylglucosaminyltransferases encoded by Mgat1, Mgat2, Mgat4a/b/c, and Mgat5 modify the N-glycans on receptors and solute transporter, possibly adapting activities in response to the metabolic environment. Herein we report that Mgat5(-/-) mice display diminished glycemic response to exogenous glucagon, together with increased insulin sensitivity. Glucagon receptor signaling and gluconeogenesis in Mgat5(-/-) cultured hepatocytes was impaired. In HEK293 cells, signaling by ectopically expressed glucagon receptor was increased by Mgat5 expression and GlcNAc supplementation to UDP-GlcNAc, the donor substrate shared by Mgat branching enzymes. The mobility of glucagon receptor in primary hepatocytes was reduced by galectin-9 binding, and the strength of the interaction was dependent on Mgat5 and UDP-GlcNAc levels. Finally, oral GlcNAc supplementation rescued the glucagon response in Mgat5(-/-) hepatocytes and mice, as well as glycolytic metabolites and UDP-GlcNAc levels in liver. Our results reveal that the hexosamine biosynthesis pathway and GlcNAc salvage contribute to glucose homeostasis through N-glycan branching on glucagon receptor.


Assuntos
Hexosaminas/biossíntese , Polissacarídeos/metabolismo , Receptores de Glucagon/metabolismo , Animais , Cromatografia Líquida , Glucagon/farmacologia , Células HEK293 , Humanos , Hipoglicemia/metabolismo , Hipoglicemia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Espectrometria de Massas em Tandem
17.
Glycobiology ; 25(2): 225-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395405

RESUMO

Nutrient transporters are critical gate-keepers of extracellular metabolite entry into the cell. As integral membrane proteins, most transporters are N-glycosylated, and the N-glycans are remodeled in the Golgi apparatus. The Golgi branching enzymes N-acetylglucosaminyltransferases I, II, IV, V and avian VI (encoded by Mgat1, Mgat2, Mgat4a/b/c Mgat5 and Mgat6), each catalyze the addition of N-acetylglucosamine (GlcNAc) in N-glycans. Here, we asked whether N-glycan branching promotes nutrient transport and metabolism in immortal human HeLa carcinoma and non-malignant HEK293 embryonic kidney cells. Mgat6 is absent in mammals, but ectopic expression can be expected to add an additional ß1,4-linked branch to N-glycans, and may provide evidence for functional redundancy of the N-glycan branches. Tetracycline (tet)-induced overexpression of Mgat1, Mgat5 and Mgat6 resulted in increased enzyme activity and increased N-glycan branching concordant with the known specificities of these enzymes. Tet-induced Mgat1, Mgat5 and Mgat6 combined with stimulation of hexosamine biosynthesis pathway (HBP) to UDP-GlcNAc, increased cellular metabolite levels, lactate and oxidative metabolism in an additive manner. We then tested the hypothesis that N-glycan branching alone might promote nutrient uptake when glucose (Glc) and glutamine are limiting. In low glutamine and Glc medium, tet-induced Mgat5 alone increased amino acids uptake, intracellular levels of glycolytic and TCA intermediates, as well as HEK293 cell growth. More specifically, tet-induced Mgat5 and HBP elevated the import rate of glutamine, although transport of other metabolites may be regulated in parallel. Our results suggest that N-glycan branching cooperates with HBP to regulate metabolite import in a cell autonomous manner, and can enhance cell growth in low-nutrient environments.


Assuntos
N-Acetilglucosaminiltransferases/fisiologia , Aminoácidos/metabolismo , Animais , Proteínas Aviárias , Transporte Biológico , Vias Biossintéticas , Configuração de Carboidratos , Proliferação de Células , Galinhas , Glicólise , Glicosilação , Células HEK293 , Células HeLa , Hexosaminas/biossíntese , Humanos
18.
Mol Cell Proteomics ; 12(4): 913-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378517

RESUMO

Mice with null mutations in specific Golgi glycosyltransferases show evidence of glycan compensation where missing carbohydrate epitopes are found on biosynthetically related structures. Repetitive saccharide sequences within the larger glycan structures are functional epitopes recognized by animal lectins. These studies provide the first in vivo support for the existence of a feedback system that maintains and regulates glycan epitope density in cells. Receptor regulation by lectin-glycan interactions and the Golgi provides a mechanism for the adaptation of cell surface receptors and solute transporters in response to environmental cues and intracellular signaling. We suggest that other posttranslational modification systems might have similar conditional features regulated by density-dependent ligand-epitope interactions.


Assuntos
Galectinas/metabolismo , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Glicosilação , Humanos , Microdomínios da Membrana/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Receptores de Superfície Celular/metabolismo
19.
Nat Cell Biol ; 9(10): 1131-41, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17891141

RESUMO

The bHLH transcription factor Hand1 is essential for placentation and cardiac morphogenesis in the developing embryo. Here we implicate Hand1 as a molecular switch that determines whether a trophoblast stem cell continues to proliferate or commits to differentiation. We identify a novel interaction of Hand1 with a protein that contains an I-mfa (inhibitor of myogenic factor) domain that anchors Hand1 in the nucleolus where it negatively regulates Hand1 activity. In the trophoblast stem-cell line Rcho-1, nucleolar sequestration of Hand1 accompanies sustained cell proliferation and renewal, whereas release of Hand1 into the nucleus leads to its activation, thus committing cells to a differentiated giant-cell fate. Site-specific phosphorylation is required for nucleolar release of Hand1, for its dimerization and biological function, and this is mediated by the non-canonical polo-like kinase Plk4 (Sak). Sak is co-expressed in Rcho-1 cells, localizes to the nucleolus during G2 and phosphorylates Hand1 as a requirement for trophoblast stem-cell commitment to a giant-cell fate. This study defines a novel cellular mechanism for regulating Hand1 that is a crucial step in the stem-cell differentiation pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Nucléolo Celular/metabolismo , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Northern Blotting , Western Blotting , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Células Gigantes/citologia , Células Gigantes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Camundongos , Fatores de Regulação Miogênica/metabolismo , Células NIH 3T3 , Fosforilação , Ligação Proteica , Proteína Fosfatase 2 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
Nat Genet ; 37(8): 883-8, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16025114

RESUMO

The polo-like kinase Plk4 (also called Sak) is required for late mitotic progression, cell survival and postgastrulation embryonic development. Here we identified a phenotype resulting from Plk4 haploinsufficiency in Plk4 heterozygous cells and mice. Plk4+/- embryonic fibroblasts had increased centrosomal amplification, multipolar spindle formation and aneuploidy compared with wild-type cells. The incidence of spontaneous liver and lung cancers was approximately 15 times high in elderly Plk4+/- mice than in Plk4+/+ littermates. Using the in vivo model of partial hepatectomy to induce synchronous cell cycle entry, we determined that the precise regulation of cyclins D1, E and B1 and of Cdk1 was impaired in Plk4+/- regenerating liver, and p53 activation and p21 and BubR1 expression were suppressed. These defects were associated with progressive cell cycle delays, increased spindle irregularities and accelerated hepatocellular carcinogenesis in Plk4+/- mice. Loss of heterozygosity occurs frequently (approximately 60%) at polymorphic markers adjacent to the PLK4 locus in human hepatoma. Reduced Plk4 gene dosage increases the probability of mitotic errors and cancer development.


Assuntos
Transformação Celular Neoplásica/genética , Haplótipos , Mitose/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Hepatectomia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/cirurgia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Mutantes , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA