Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arch Microbiol ; 203(7): 3825-3837, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33997908

RESUMO

Indole acetic acid (IAA) can upregulate genes encoding enzymes responsible for the synthesis of carboxylates involved in phosphorus (P) solubilisation. Here, we investigated whether IAA and its precursor affect the P-solubilising activity of rhizobacteria. A total of 841 rhizobacteria were obtained using taxonomically selective and enrichment isolation methods. Phylogenetic analysis revealed 15 genera of phosphate solubilising bacteria (PSB) capable of producing a wide range of IAA concentrations between 4.1 and 67.2 µg mL-1 in vitro. Addition of L-tryptophan to growth media improved the P-solubilising activity of PSB that were able to produce IAA greater than 20 µg mL-1. This effect was connected to the drop of pH and release of a high concentration of carboxylates, comprising α-ketoglutarate, cis-aconitate, citrate, malate and succinate. An increase in production of organic acids rather than IAA production per se appears to result in the improved P solubilisation in PSB.


Assuntos
Bactérias , Ácidos Indolacéticos , Fosfatos , Bactérias/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/química , Filogenia
2.
Mol Plant Microbe Interact ; 33(8): 1036-1039, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32314945

RESUMO

Trichoderma species are widely used to control fungal and nematode diseases of crops. To date, only one complete Trichoderma genome has been sequenced, T. reesei QM6a, a model fungus for industrial enzyme production, while the species or strains used for biological control of plant diseases are only available as draft genomes. Previously, we demonstrated that two Trichoderma strains (T. afroharzianum and T. cyanodichotomus) provide effective control of nematode and fungal plant pathogens. Based on deep sequencing using Illumina and Pacbio platforms, we have assembled high-quality genomes of the above two strains, with contig N50 reaching 4.2 and 1.7 Mbp, respectively, which is greater than those of published draft genomes. The genome data will provide a resource to assist research on the biological control mechanisms of Trichoderma spp.


Assuntos
Agentes de Controle Biológico , Genoma Fúngico , Doenças das Plantas/microbiologia , Trichoderma , Sequência de Bases , Doenças das Plantas/prevenção & controle , Trichoderma/genética , Trichoderma/fisiologia
4.
Front Plant Sci ; 14: 1076894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487209

RESUMO

Introduction: Symbiotic N fixation inhibition induced by N supply to legumes is potentially regulated by the relative N and P availability in soil. However, the specific responses of different legume species to changes in N:P availability remain unclear, and must be better understood to optimize symbiotic N fixation inputs under N enrichment. This study investigated mechanisms by which soil N and P supply influence the symbiotic N fixation of eight legume species, to quantify the inter-specific differences, and to demonstrate how these differences can be determined by the stoichiometric homeostasis in N:P ratios (HN:P). Methods: Eight herbaceous legume species were grown separately in outdoor pots and treated with either no fertilizer (control), N fertilizer (14 g N m-2), P fertilizer (3.5 g P m-2) or both N and P fertilizer. Plant nutrients, stoichiometric characteristics, root biomass, non-structural carbohydrates (NSC), rhizosphere chemistry, P mobilization, root nodulation and symbiotic N fixation were measured. Results: N addition enhanced rhizosphere P mobilization but drove a loss of root biomass and root NSC via exudation of P mobilization compound (organic acid), especially so in treatments without P addition. N addition also induced a 2-14% or 14-36% decline in symbiotic N fixation per plant biomass by legumes in treatments with or without P addition, as a result of decreasing root biomass and root NSC. The changes in symbiotic N fixation were positively correlated with stoichiometric homeostasis of N:P ratios in intact plants without root nodules, regardless of P additions. Discussion: This study indicates that N addition can induce relative P limitations for growth, which can stimulate rhizosphere P mobilization at the expense of root biomass and carbohydrate concentrations, reducing symbiotic N fixation in legumes. Legume species that had less changes in plant N:P ratio, such as Lespedeza daurica and Medicago varia maintained symbiotic N fixation to a greater extent under N addition.

5.
FEMS Microbiol Ecol ; 98(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35416244

RESUMO

A total of 120 Mesorhizobium strains collected from the central dry zone of Myanmar were analyzed in a pot experiment to evaluate nodulation and symbiotic effectiveness (SE%) in chickpea plants. Phylogenetic analyses revealed all strains belonged to the genus Mesorhizobium according to 16-23S rDNA IGS and the majority of chickpea nodulating rhizobia in Myanmar soils were most closely related to M. gobiense, M. muleiense, M. silamurunense, M. tamadayense and M. temperatum. Around two-thirds of the Myanmar strains (68%) were most closely related to Indian strain IC-2058 (CA-181), which is also most closely related to M. gobiense. There were no strains that were closely related to the cognate rhizobial species to nodulate chickpea: M. ciceri and M. mediterraneum. Strains with diverse 16S-23S rDNA IGS shared similar nodC and nifH gene sequences with chickpea symbionts. Detailed sequence analysis of nodC and nifH found that the strains in Myanmar were somewhat divergent from the group including M. ciceri and were more closely related to M. muleiense and IC-2058. A cross-continent analysis between strains isolated in Australia compared with Myanmar found that there was little overlap in species, where Australian soils were dominated with M. ciceri, M. temperatum and M. huakuii. The only co-occurring species found in both Myanmar and Australia were M. tamadayense and M. silumurunense. Continued inoculation with CC1192 may have reduced diversity of chickpea strains in Australian soils. Isolated strains in Australian and Myanmar had similar adaptive traits, which in some cases were also phylogenetically related. The genetic discrepancy between chickpea nodulating strains in Australia and Myanmar is not only due to inoculation history but to adaptation to soil conditions and crop management over a long period, and there has been virtually no loss of symbiotic efficiency over this time in strains isolated from soils in Myanmar.


Assuntos
Cicer , Mesorhizobium , Rhizobium , Austrália , DNA Bacteriano/genética , DNA Ribossômico , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Análise de Sequência de DNA , Solo , Simbiose
6.
Sci Rep ; 12(1): 9677, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690652

RESUMO

Fusarium crown rot and wheat sharp eyespot are major soil-borne diseases of wheat, causing serious losses to wheat yield in China. We applied high-throughput sequencing combined with qPCR to determine the effect of winter wheat seed dressing, with either Trichoderma atroviride HB20111 spore suspension or a chemical fungicide consisting of 6% tebuconazole, on the fungal community composition and absolute content of pathogens Fusarium pseudograminearum and Rhizoctonia cerealis in the rhizosphere at 180 days after planting. The results showed that the Trichoderma and chemical fungicide significantly reduced the amount of F. pseudograminearum in the rhizosphere soil (p < 0.05), and also changed the composition and structure of the fungal community. In addition, field disease investigation and yield measurement showed that T. atroviride HB20111 treatment reduced the whiteheads with an average control effect of 60.1%, 14.9% higher than the chemical treatment; T. atroviride HB20111 increased yield by 7.7%, which was slightly more than the chemical treatment. Therefore, T. atroviride HB20111 was found to have the potential to replace chemical fungicides to control an extended range of soil-borne diseases of wheat and to improve wheat yield.


Assuntos
Fungicidas Industriais , Hypocreales , Micobioma , Trichoderma , Bandagens , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rizosfera , Sementes/microbiologia , Solo , Triticum/microbiologia
7.
Sci Rep ; 12(1): 8381, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589885

RESUMO

Burkholderia vietnamiensis B418 is a multifunctional plant growth-promoting rhizobacteria (PGPR) strain with nitrogen-fixing and phosphate-solubilizing capability which can be employed for root-knot nematode (RKN) management on various crops and vegetables. Here we investigated the control efficacy of B. vietnamiensis B418 inoculation against RKN on watermelon, applied either alone or combined with nematicides fosthiazate or avermectin, and their effects on bacterial and fungal microbiomes in rhizosphere soil. The results of field experiments showed individual application of B418 displayed the highest control efficacy against RKN by 71.15%. The combinations with fosthiazate and avermectin exhibited slight incompatibility with lower inhibitory effects of 62.71% and 67.87%, respectively, which were still notably higher than these nematicides applied separately. Analysis of microbiome assemblages revealed B418 inoculation resulted in a slight reduction for bacterial community and a significant increment for fungal community, suggesting that B418 could compete with other bacteria and stimulate fungal diversity in rhizosphere. The relative abundance of Xanthomonadales, Gemmatimonadales and Sphingomonadales increased while that of Actinomycetales reduced with B418 inoculation. The predominate Sordariomycetes of fungal community decreased dramatically in control treatment with B418 inoculation whereas there were increments in fosthiazate and avermectin treatments. Additionally, nitrogen (N) cycling by soil microbes was estimated by quantifying the abundance of microbial functional genes involved in N-transformation processes as B418 has the capability of N-fixation. The copy number of N-fixing gene nifH increased with B418 inoculation, and the highest increment reached 35.66% in control treatment. Our results demonstrate that B. vietnamiensis B418 is an effective biological nematicide for nematode management, which acts through the modulation of rhizosphere microbial community.


Assuntos
Burkholderia , Citrullus , Microbiota , Nematoides , Animais , Antinematódeos/farmacologia , Nitrogênio , Rizosfera , Solo , Microbiologia do Solo
8.
Plants (Basel) ; 9(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121479

RESUMO

An in-depth assessment of plant nutrient resorption can offer insights into understanding ecological processes and functional responses to biotic and abiotic changes in the environment. The legume proportion in a mixed grassland can drive changes in the soil environment and plant relationships, but little information is available regarding how the legume proportion influences plant nutrient resorption in mixed grasslands. In this study, three mixed communities of Leymus chinensis (Trin.) Tzvel. and Medicago sativa L. differing in legume proportion (Low-L, with 25% legume composition; Mid-L, with 50% legume composition; High-L, with 75% legume composition) were established with four replicates in a degraded grassland. Four years after establishing the mixed grassland, the quantity of biological N2 fixation by M. sativa, the availabilities of water and nitrogen (N) and phosphorus (P) in soil were examined, and the concentrations and resorption of leaf N and P for both species were measured during forage maturation and senescence. The results showed Mid-L had greater biological N2 fixation and soil N availability than Low-L and High-L, while the High-L had lower soil water and P availability, but a greater soil available N:P ratio compared with Low-L and Mid-L. Legume proportion did not alter N or P concentrations of mature leaves. However, in Mid-L N resorption was reduced by 8 to 16% for the two mixed-species compared with Low-L and High-L. High-L enhanced P resorption by 20 to 24% in both plant species compared with Low-L. The L. chinensis and M. sativa responded differently to varied legume proportion in terms of P resorption. It was concluded that legume proportion drove changes in soil nutrient availability of mixed communities, which primarily altered plant nutrient resorption during senescence, but had no influence on the nutrient concentrations of mature plants. A moderate legume proportion reduced N resorption, and increased senesced leaf N concentration of grass and legume species. The difference in P resorption by two mixed-species significantly changed the interspecific difference of senesced leaf P concentration and the N:P ratio with varied legume proportion.

9.
Microorganisms ; 8(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878079

RESUMO

Clubroot is a disease of cruciferous crops that causes significant economic losses to vegetable production worldwide. We applied high-throughput amplicon sequencing technology to quantify the effect of Trichodermaharzianum LTR-2 inoculation on the rhizosphere community of Chinese cabbage (Brassica rapa subsp. pekinensis cv. Jiaozhou) in a commercial production area. T. harzianum inoculation of cabbage reduced the incidence of clubroot disease by 45.4% (p < 0.05). The disease control efficacy (PDIDS) was 63%. This reduction in disease incidence and severity coincided with a drastic reduction in both the relative abundance of Plasmodiaphora brassicae, the causative pathogen of cabbage clubroot disease, and its copy number in rhizosphere soil. Pathogenic fungi Alternaria and Fusarium were also negatively associated with Trichoderma inoculation according to co-occurrence network analysis. Inoculation drastically reduced the relative abundance of the dominant bacterial genera Delftia and Pseudomonas, whilst increasing others including Bacillus. Our results demonstrate that T. harzianum LTR-2 is an effective biological control agent for cabbage clubroot, which acts through modulation of the soil and rhizosphere microbial community.

10.
Microorganisms ; 8(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138329

RESUMO

Soil nitrification (microbial oxidation of ammonium to nitrate) can lead to nitrogen leaching and environmental pollution. A number of plant species are able to suppress soil nitrifiers by exuding inhibitors from roots, a process called biological nitrification inhibition (BNI). However, the BNI activity of perennial grasses in the nutrient-poor soils of Australia and the effects of BNI activity on nitrifying microbes in the rhizosphere microbiome have not been well studied. Here we evaluated the BNI capacity of bermudagrass (Cynodon dactylon L.), St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze), saltwater couch (Sporobolus virginicus), seashore paspalum (Paspalum vaginatum Swartz.), and kikuyu grass (Pennisetum clandestinum) compared with the known positive control, koronivia grass (Brachiaria humidicola). The microbial communities were analysed by sequencing 16S rRNA genes. St. Augustinegrass and bermudagrass showed high BNI activity, about 80 to 90% of koronivia grass. All the three grasses with stronger BNI capacities suppressed the populations of Nitrospira in the rhizosphere, a bacteria genus with a nitrite-oxidizing function, but not all of the potential ammonia-oxidizing archaea. The rhizosphere of saltwater couch and seashore paspalum exerted a weak recruitment effect on the soil microbiome. Our results demonstrate that BNI activity of perennial grasses played a vital role in modulating nitrification-associated microbial populations.

11.
Genome Biol ; 21(1): 89, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252812

RESUMO

BACKGROUND: The soil environment is responsible for sustaining most terrestrial plant life, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere, and how it responds to agricultural management such as crop rotations and soil tillage, is vital for improving global food production. RESULTS: This study establishes an in-depth soil microbial gene catalogue based on the living-decaying rhizosphere niches in a cropping soil. The detritusphere microbiome regulates the composition and function of the rhizosphere microbiome to a greater extent than plant type: rhizosphere microbiomes of wheat and chickpea were homogenous (65-87% similarity) in the presence of decaying root (DR) systems but were heterogeneous (3-24% similarity) where DR was disrupted by tillage. When the microbiomes of the rhizosphere and the detritusphere interact in the presence of DR, there is significant degradation of plant root exudates by the rhizosphere microbiome, and genes associated with membrane transporters, carbohydrate and amino acid metabolism are enriched. CONCLUSIONS: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the detritusphere microbiome in determining the metagenome of developing root systems. Modifications in root microbial function through soil management can ultimately govern plant health, productivity and food security.


Assuntos
Microbiota , Rizosfera , Microbiologia do Solo , Cicer/microbiologia , Genes Microbianos , Metagenoma , Metagenômica , Anotação de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Simbiose , Triticum/microbiologia
12.
Cell Discov ; 3: 17031, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861277

RESUMO

Astragalus membranaceus, also known as Huangqi in China, is one of the most widely used medicinal herbs in Traditional Chinese Medicine. Traditional Chinese Medicine formulations from Astragalus membranaceus have been used to treat a wide range of illnesses, such as cardiovascular disease, type 2 diabetes, nephritis and cancers. Pharmacological studies have shown that immunomodulating, anti-hyperglycemic, anti-inflammatory, antioxidant and antiviral activities exist in the extract of Astragalus membranaceus. Therefore, characterising the biosynthesis of bioactive compounds in Astragalus membranaceus, such as Astragalosides, Calycosin and Calycosin-7-O-ß-d-glucoside, is of particular importance for further genetic studies of Astragalus membranaceus. In this study, we reconstructed the Astragalus membranaceus full-length transcriptomes from leaf and root tissues using PacBio Iso-Seq long reads. We identified 27 975 and 22 343 full-length unique transcript models in each tissue respectively. Compared with previous studies that used short read sequencing, our reconstructed transcripts are longer, and are more likely to be full-length and include numerous transcript variants. Moreover, we also re-characterised and identified potential transcript variants of genes involved in Astragalosides, Calycosin and Calycosin-7-O-ß-d-glucoside biosynthesis. In conclusion, our study provides a practical pipeline to characterise the full-length transcriptome for species without a reference genome and a useful genomic resource for exploring the biosynthesis of active compounds in Astragalus membranaceus.

13.
New Phytol ; 173(3): 592-599, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17244054

RESUMO

Banksia species (Proteaceae) occur on some of the most phosphorus (P)-impoverished soils in the world. We hypothesized that plasticity in the exudation of P-mobilizing carboxylates would be greater in widespread than in rare Banksia species. Glasshouse experiments were conducted to identify and quantify carboxylate exudation in three widespread and six narrowly distributed Banksia species. High concentrations of carboxylates (predominantly malate, citrate, aconitate, oxalate) were measured in the rhizosphere of all nine species of Banksia on six different soils, but widespread species did not have greater plasticity in the composition of exuded carboxylates. Based on the evidence in the present study, rarity in Banksia cannot be explained by limited phenotypic adjustment of carboxylate exudation.


Assuntos
Ácidos Carboxílicos/metabolismo , Fenótipo , Proteaceae/metabolismo , Tamanho do Órgão , Fósforo/metabolismo , Folhas de Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Caules de Planta/anatomia & histologia , Plântula/metabolismo , Sementes/metabolismo , Solo
14.
Plant Cell Environ ; 30(12): 1557-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17944818

RESUMO

Banksia species (Proteaceae) occur on some of the most phosphorus (P)-impoverished soils in the world. We hypothesized that Banksia spp. maximize P-use efficiency through high photosynthetic P-use efficiency, long leaf lifespan (P residence time), effective P re-mobilization from senescing leaves, and maximizing seed P concentration. Field and glasshouse experiments were conducted to quantify P-use efficiency in nine Banksia species. Leaf P concentrations for all species were extremely low (0.14-0.32 mg P g(-1) DM) compared with leaf P in other species reported and low relative to other plant nutrients in Banksia spp.; however, moderately high rates of photosynthesis (13.8-21.7 micromol CO2 m(-2) s(-1)), were measured. Some of the Banksia spp. had greater P proficiency (i.e. final P concentration in senesced leaves after re-mobilization; range: 27-196 microg P g(-1) DM) than values reported for any other species in the literature. Seeds exhibited significantly higher P concentrations (6.6-12.2 mg P g(-1 )DM) than leaves, and species that sprout after fire ('re-sprouters') had significantly greater seed mass and P content than species that are killed by fire and regenerate from seed ('seeders'). Seeds contained only small amounts of polyphosphate (between 1.3 and 6 microg g(-1) DM), and this was not correlated with P concentration or fire response. Based on the evidence in the present study, we conclude that Banksia species are highly efficient in their use of P, explaining, in part, their success on P-impoverished soils, with little variation between species.


Assuntos
Adaptação Fisiológica , Fósforo/metabolismo , Folhas de Planta/metabolismo , Proteaceae/metabolismo , Sementes/metabolismo , Ecossistema , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteaceae/crescimento & desenvolvimento , Solo/análise , Austrália Ocidental
15.
Funct Plant Biol ; 33(12): 1091-1102, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32689320

RESUMO

Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g-1) or (ii) the top 500 mm (12 µg P g-1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0-50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g-1, L. australis 2.4 mg g-1, M. sativa 3.2 mg g-1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA