Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetes Metab ; 50(1): 101507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141807

RESUMO

OBJECTIVE: Heterozygous pathogenic or likely pathogenic (P/LP) PDX1 variants cause monogenic diabetes. We comprehensively examined the phenotypes of carriers of P/LP PDX1 variants, and delineated potential treatments that could be efficient in an objective of precision medicine. METHODS: The study primarily involved a family harboring a novel P/LP PDX1 variant. We then conducted an analysis of documented carriers of P/LP PDX1 variants, from the Human Gene Mutation Database (HGMD), RaDiO study, and Type 2 Diabetes Knowledge Portal (T2DKP) including 87 K participants. RESULTS: Within the family, we identified a P/LP PDX1 variant encoding p.G232S in four relatives. All of them exhibited diabetes, albeit with very different ages of onset (10-40 years), along with caudal pancreatic agenesis and childhood-onset obesity. In the HGMD, 79 % of carriers of a P/LP PDX1 variant displayed diabetes (with differing ages of onset from eight days of life to 67 years), 63 % exhibited pancreatic insufficiency and surprisingly 40 % had obesity. The impact of P/LP PDX1 variants on increased risk of type 2 diabetes mellitus was confirmed in the T2DKP. Dipeptidyl peptidase 4 inhibitor (DPP4i) and glucagon-like peptide-1 receptor agonist (GLP1-RA), enabled good glucose control without hypoglycemia and weight management. CONCLUSIONS: This study reveals diverse clinical presentations among the carriers of a P/LP PDX1 variant, highlighting strong variations in diabetes onset, and unexpectedly high prevalence of obesity and pancreatic development abnormalities. Clinical data suggest that DPP4i and GLP1-RA may be the best effective treatments to manage both glucose and weight controls, opening new avenue in precision diabetic medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Criança , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Medicina de Precisão , Transativadores/genética , Proteínas de Homeodomínio/genética , Hipoglicemiantes/uso terapêutico , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/genética
2.
Diabetes Care ; 47(3): 444-451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170957

RESUMO

OBJECTIVE: Rare variants in DYRK1B have been described in some patients with central obesity, type 2 diabetes, and early-onset coronary disease. Owing to the limited number of conducted studies, the broader impact of DYRK1B variants on a larger scale has yet to be investigated. RESEARCH DESIGN AND METHODS: DYRK1B was sequenced in 9,353 participants from a case-control study for obesity and type 2 diabetes. Each DYRK1B variant was functionally assessed in vitro. Variant pathogenicity was determined using criteria from the American College of Medical Genetics and Genomics (ACMG). The effect of pathogenic or likely pathogenic (P/LP) variants on metabolic traits was assessed using adjusted mixed-effects score tests. RESULTS: Sixty-five rare, heterozygous DYRK1B variants were identified and were not associated with obesity or type 2 diabetes. Following functional analyses, 20 P/LP variants were pinpointed, including 6 variants that exhibited a fully inhibitory effect (P/LP-null) on DYRK1B activity. P/LP and P/LP-null DYRK1B variants were associated with increased BMI and obesity risk; however, the impact was notably more pronounced for the P/LP-null variants (effect of 8.0 ± 3.2 and odds ratio of 7.9 [95% CI 1.2-155]). Furthermore, P/LP-null variants were associated with higher fasting glucose and type 2 diabetes risk (effect of 2.9 ± 1.0 and odds ratio of 4.8 [95% CI 0.85-37]), while P/LP variants had no effect on glucose homeostasis. CONCLUSIONS: P/LP, total loss-of-function DYRK1B variants cause monogenic obesity associated with type 2 diabetes. This study underscores the significance of conducting functional assessments in order to accurately ascertain the tangible effects of P/LP DYRK1B variants.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudos de Casos e Controles , Obesidade/complicações , Obesidade/genética , Fenótipo , Glucose
3.
JHEP Rep ; 6(1): 100948, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125300

RESUMO

Background & Aims: Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods: Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results: Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion: MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications: This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.

4.
Diabetes ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137110

RESUMO

We postulated that T2D predisposes to exocrine pancreatic diseases through (epi)genetic mechanisms. We explored the methylome (methylationEPIC arrays) of the exocrine pancreas of 141 donors, assessing the impact of T2D. Epigenome-wide association study (EWAS) for T2D identified a hypermethylation in an enhancer of the Pancreatic-Lipase-Related-Protein 1 (PNLIPRP1) gene, associated with decreased PNLIPRP1 expression. PNLIPRP1 null variants (in 191K participants of the UKbiobank) associated with elevated glycemia and LDL-cholesterol. Mendelian Randomisation using 2.5M SNP OmniArrays in 111 donors evidenced that T2D was causal of PNLIPRP1 hypermethylation, which was causal for LDL-cholesterol. Further AR42J rat exocrine cell studies demonstrated that Pnliprp1 knockdown induced acinar-to-ductal metaplasia, a known pre-pancreatic cancer state, and increased cholesterol levels, reversible with statin. This (epi)genetic study suggests a role for PNLIPRP1 in human metabolism and on exocrine pancreas function with potential implications for pancreatic diseases.

5.
Mol Metab ; 79: 101867, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159881

RESUMO

OBJECTIVE: Human functional genomics has proven powerful in discovering drug targets for common metabolic disorders. Through this approach, we investigated the involvement of the purinergic receptor P2RY1 in type 2 diabetes (T2D). METHODS: P2RY1 was sequenced in 9,266 participants including 4,177 patients with T2D. In vitro analyses were then performed to assess the functional effect of each variant. Expression quantitative trait loci (eQTL) analysis was performed in pancreatic islets from 103 pancreatectomized individuals. The effect of P2RY1 on glucose-stimulated insulin secretion was finally assessed in human pancreatic beta cells (EndoCßH5), and RNA sequencing was performed on these cells. RESULTS: Sequencing P2YR1 in 9,266 participants revealed 22 rare variants, seven of which were loss-of-function according to our in vitro analyses. Carriers, except one, exhibited impaired glucose control. Our eQTL analysis of human islets identified P2RY1 variants, in a beta-cell enhancer, linked to increased P2RY1 expression and reduced T2D risk, contrasting with variants located in a silent region associated with decreased P2RY1 expression and increased T2D risk. Additionally, a P2RY1-specific agonist increased insulin secretion upon glucose stimulation, while the antagonist led to decreased insulin secretion. RNA-seq highlighted TXNIP as one of the main transcriptomic markers of insulin secretion triggered by P2RY1 agonist. CONCLUSION: Our findings suggest that P2RY1 inherited or acquired dysfunction increases T2D risk and that P2RY1 activation stimulates insulin secretion. Selective P2RY1 agonists, impermeable to the blood-brain barrier, could serve as potential insulin secretagogues.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Genômica , Glucose/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo
6.
Nat Commun ; 15(1): 6627, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103322

RESUMO

Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts. OPRD1 is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Receptores Opioides delta , Receptores Opioides delta/metabolismo , Receptores Opioides delta/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/genética , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA