Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 12(21)2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37947605

RESUMO

Synchronized contractions of cardiomyocytes within the heart are tightly coupled to electrical stimulation known as excitation-contraction coupling. Calcium plays a key role in this process and dysregulated calcium handling can significantly impair cardiac function and lead to the development of cardiomyopathies and heart failure. Here, we describe a method and analytical technique to study myofilament-localized calcium signaling using the intensity-based fluorescent biosensor, RGECO-TnT. Dilated cardiomyopathy is a heart muscle disease that negatively impacts the heart's contractile function following dilatation of the left ventricle. We demonstrate how this biosensor can be used to characterize 2D hiPSC-CMs monolayers generated from a healthy control subject compared to two patients diagnosed with dilated cardiomyopathy. Lastly, we provide a step-by-step guide for single-cell data analysis and describe a custom Transient Analysis application, specifically designed to quantify features of calcium transients. All in all, we explain how this analytical approach can be applied to phenotype hiPSC-CM behaviours and stratify patient responses to identify perturbations in calcium signaling.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Miofibrilas , Cardiomiopatia Dilatada/genética , Cálcio , Miócitos Cardíacos
2.
Stem Cell Rev Rep ; 18(3): 1143-1167, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35107768

RESUMO

Stem cell therapy for cardiac regeneration has been gaining traction as a possible intervention for the reduction of the burden associated with MI and heart failure. However, stem cell therapies have several shortcomings, including poor engraftment, limited improvements in cardiac function, and possible teratogenicity. Recently, extracellular vesicles (EVs) from stem cell sources have been explored as a novel therapy to regenerate the injured myocardium in several animal MI trials. In this systematic review and meta-analysis, we investigate the use of stem cell-derived EVs for cardiac repair preclinical trials in animal MI models. Cochrane Library, Medline, Embase, PubMed, Scopus and Web of Science and grey literature (Canadian Agency for Drugs, Technologies in Health, and Google Scholar) were searched through August 20, 2020 and 37 articles were included in the final analysis. The overall effect size observed in EV-treated small animals after MI for ejection fraction (EF) was 10.85 [95 %CI: 8.79, 12.90] and for fractional shortening (FS) was 7.19 [95 %CI: 5.43, 8.96] compared to control-treated animals. The most abundant stem cell source used were mesenchymal stem cells which showed robust improvements in EF and FS (MD = 11.89 [95 % CI: 9.44, 14.34] and MD = 6.96 [95 % CI: 4.97, 8.96], respectively). Significant publication bias was detected for EF and FS outcomes. This study supports the use of EVs derived from stem cells as a novel therapy for cardiac repair after MI. Further investigation in larger animal studies may be necessary before clinical trials.PROSPERO registration number: CRD42019142218.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Canadá , Infarto do Miocárdio/terapia , Transplante de Células-Tronco
3.
J Tissue Eng Regen Med ; 16(2): 110-127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726328

RESUMO

The use of stem cells to repair the heart after a myocardial infarction (MI) remains promising, yet clinical trials over the past 20 years suggest that cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function. Here, we demonstrate the cardioprotective potential of a composite inserting human amniotic stromal mesenchymal stem cells (ASMCs) in a chitosan and hyaluronic acid (C/HA) based hydrogel in a rat MI model. Mechanical characterization of the C/HA platform indicated a swift elastic conversion at 40°C and a rapid sol-gel transition time at 37°C. Cell viability assay presented active and proliferating AMSCs in the C/HA. The ASMCs + C/HA injected composite significantly increased left ventricular ejection fraction, fractional shortening, and neovessel formation. The encapsulated AMSCs were abundantly detected in the infarcted myocardium 6 weeks post-administration and co-expressed cardiac proteins and notably proliferative markers. Proteomic profiling revealed that extracellular vesicles released from hypoxia preconditioned ASMCs contained proteins involved in cytoprotection, angiogenesis, cardiac differentiation and non-canonical Wnt-signaling. Independent activation of non-canonical Wnt-signaling pathways in ASMCs induced cardiogenesis. Despite a low injected cellular density at baseline, the encapsulated AMSCs were abundantly retained and increased cardiac function. Furthermore, the C/HA hydrogel provided an active milieu for the AMSCs to proliferate, co-express cardiac proteins, and induce new vessel formation. Hence, this novel composite of AMSCs + C/HA scaffold is a conceivable candidate that could restore cardiac function and reduce remodeling.


Assuntos
Hidrogéis , Proteômica , Animais , Hidrogéis/farmacologia , Miocárdio/metabolismo , Ratos , Células-Tronco , Volume Sistólico , Função Ventricular Esquerda
4.
PLoS One ; 15(3): e0230586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32203543

RESUMO

Planar cell polarity (PCP) pathway is crucial for tissue morphogenesis. Mutations in PCP genes cause multi-organ anomalies including dysplastic kidneys. Defective PCP signaling was postulated to contribute to cystogenesis in polycystic kidney disease. This work was undertaken to elucidate the role of the key PCP gene, Vangl2, in embryonic and postnatal renal tubules and ascertain whether its loss contributes to cyst formation and defective tubular function in mature animals. We generated mice with ubiquitous and collecting duct-restricted excision of Vangl2. We analyzed renal tubules in mutant and control mice at embryonic day E17.5 and postnatal days P1, P7, P30, P90, 6- and 9-month old animals. The collecting duct functions were analyzed in young and adult mutant and control mice. Loss of Vangl2 leads to profound tubular dilatation and microcysts in embryonic kidneys. Mechanistically, these abnormalities are caused by defective convergent extension (larger tubular cross-sectional area) and apical constriction (cuboidal cell shape and a reduction of activated actomyosin at the luminal surface). However, the embryonic tubule defects were rapidly resolved by Vangl2-independent mechanisms after birth. Normal collecting duct architecture and functions were found in young and mature animals. During embryogenesis, Vangl2 controls tubular size via convergent extension and apical constriction. However, rapidly after birth, PCP-dependent control of tubular size is switched to a PCP-independent regulatory mechanism. We conclude that loss of the Vangl2 gene is dispensable for tubular elongation and maintenance postnatally. It does not lead to cyst formation and is unlikely to contribute to polycystic kidney disease.


Assuntos
Polaridade Celular/genética , Rim/embriologia , Rim/metabolismo , Proteínas do Tecido Nervoso/genética , Adulto , Animais , Deleção de Genes , Humanos , Rim/citologia , Camundongos , Proteínas do Tecido Nervoso/deficiência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA