RESUMO
Rangelands are the dominant land use across a broad swath of central North America where they span a wide gradient, from <350 to >900 mm, in mean annual precipitation. Substantial efforts have examined temporal and spatial variation in aboveground net primary production (ANPP) to precipitation (PPT) across this gradient. In contrast, net secondary productivity (NSP, e.g., primary consumer production) has not been evaluated analogously. However, livestock production, which is a form of NSP or primary consumer production supported by primary production, is the dominant non-cultivated land use and an integral economic driver in these regions. Here, we used long-term (mean length = 19 years) ANPP and NSP data from six research sites across the Central Great Plains with a history of a conservative stocking to determine resource (i.e., PPT)-productivity relationships, NSP sensitivities to dry-year precipitation, and regional trophic efficiencies (e.g., NSP:ANPP ratio). PPT-ANPP relationships were linear for both temporal (site-based) and spatial (among site) gradients. The spatial PPT-NSP model revealed that PPT mediated a saturating relationship for NSP as sites became more mesic, a finding that contrasts with many plant-based PPT-ANPP relationships. A saturating response to high growing-season precipitation suggests biogeochemical rather than vegetation growth constraints may govern NSP (i.e., large herbivore production). Differential sensitivity in NSP to dry years demonstrated that the primary consumer production response heightened as sites became more xeric. Although sensitivity generally decreased with increasing precipitation as predicted from known PPT-ANPP relationships, evidence suggests that the dominant species' identity and traits influenced secondary production efficiency. Non-native northern mixed-grass prairie was outperformed by native Central Great Plains rangeland in sensitivity to dry years and efficiency in converting ANPP to NSP. A more comprehensive understanding of the mechanisms leading to differences in producer and consumer responses will require multisite experiments to assess biotic and abiotic determinants of multi-trophic level efficiency and sensitivity.
Assuntos
Ecossistema , Estados Unidos , Animais , Chuva , Modelos Biológicos , Fatores de TempoRESUMO
Infectious diseases pose a significant threat to global health and biodiversity. Yet, predicting the spatiotemporal dynamics of wildlife epizootics remains challenging. Disease outbreaks result from complex nonlinear interactions among a large collection of variables that rarely adhere to the assumptions of parametric regression modeling. We adopted a nonparametric machine learning approach to model wildlife epizootics and population recovery, using the disease system of colonial black-tailed prairie dogs (BTPD, Cynomys ludovicianus) and sylvatic plague as an example. We synthesized colony data between 2001 and 2020 from eight USDA Forest Service National Grasslands across the range of BTPDs in central North America. We then modeled extinctions due to plague and colony recovery of BTPDs in relation to complex interactions among climate, topoedaphic variables, colony characteristics, and disease history. Extinctions due to plague occurred more frequently when BTPD colonies were spatially clustered, in closer proximity to colonies decimated by plague during the previous year, following cooler than average temperatures the previous summer, and when wetter winter/springs were preceded by drier summers/falls. Rigorous cross-validations and spatial predictions indicated that our final models predicted plague outbreaks and colony recovery in BTPD with high accuracy (e.g., AUC generally >0.80). Thus, these spatially explicit models can reliably predict the spatial and temporal dynamics of wildlife epizootics and subsequent population recovery in a highly complex host-pathogen system. Our models can be used to support strategic management planning (e.g., plague mitigation) to optimize benefits of this keystone species to associated wildlife communities and ecosystem functioning. This optimization can reduce conflicts among different landowners and resource managers, as well as economic losses to the ranching industry. More broadly, our big data-model integration approach provides a general framework for spatially explicit forecasting of disease-induced population fluctuations for use in natural resource management decision-making.
Assuntos
Ecossistema , Yersinia pestis , Animais , Big Data , Sciuridae , Clima , Animais SelvagensRESUMO
Adaptive management of large herbivores requires an understanding of how spatial-temporal fluctuations in forage biomass and quality influence animal performance. Advances in remote sensing have yielded information about the spatial-temporal dynamics of forage biomass, which in turn have informed rangeland management decisions such as stocking rate and paddock selection for free-ranging cattle. However, less is known about the spatial-temporal patterns of diet quality and their influence on large herbivore performance. This is due to infrequent concurrent ground observations of forage conditions with performance (e.g., mass gain), and previously limited satellite data at fine spatial and temporal scales. We combined multi-temporal field observations of diet quality (weekly) and mass gain (monthly) with satellite-derived phenological metrics (pseudo-daily, using data fusion and interpolation) to model daily mass gains of free-ranging yearling cattle in shortgrass steppe. We used this model to predict grazing season (mid-May to October) mass gains, a key management indicator, across 40 different paddocks grazed over a 10-year period (n = 138). We found strong relationships between diet quality and the satellite-derived phenological metrics, especially metrics related to the timing and rate of green-up and senescence. Satellite-derived diet quality estimates were strong predictors of monthly mass gains (R2 = 0.68) across a wide range of aboveground net herbaceous production. Season-long predictions of average daily gain and cattle off-mass had mean absolute errors of 8.9% and 2.9%, respectively. The model performed better temporally (across repeated observations in the same paddock) than spatially (across all paddocks within a given year), highlighting the need for accurate vegetation maps and robust field data collection across both space and time. This study demonstrates that free-ranging cattle performance in rangelands is strongly affected by diet quality, which is related to the timing of vegetation green-up and senescence. Senescing vegetation suppressed mass gains, even if adequate forage was available. The satellite-based pseudo-daily approach presented here offers new opportunities for adaptive management of large herbivores, such as identifying within-season triggers to move livestock among paddocks, predicting wildlife herd health, or timing the grazing season to better match earlier spring green-up caused by climate change and plant species invasion.
Assuntos
Dieta , Herbivoria , Animais , Bovinos , Dieta/veterinária , Gado , Estações do Ano , Fatores de TempoRESUMO
Understanding how plant communities respond to temporal patterns of precipitation in water-limited ecosystems is necessary to predict interannual variation and trends in ecosystem properties, including forage production, biogeochemical cycling, and biodiversity. In North American shortgrass prairie, we measured plant abundance, functional traits related to growth rate and drought tolerance, and aboveground net primary productivity to identify: species-level responsiveness to precipitation (precipitation sensitivity Sspp ) across functional groups; Sspp relationships to continuous plant traits; and whether continuous trait-Sspp relationships scaled to the community level. Across 32 plant species, we found strong bivariate relationships of both leaf dry matter content (LDMC) and leaf osmotic potential Ψosm with Sspp . Yet, LDMC and specific leaf area were retained in the lowest Akaike information criterion multiple regression model, explaining 59% of Sspp . Most relationships between continuous traits and Sspp scaled to the community level but were often contingent on the presence/absence of particular species and/or land management at a site. Thus, plant communities in shortgrass prairie may shift towards slower growing, more stress-resistant species in drought years and/or chronically drier climate. These findings highlight the importance of both leaf economic and drought tolerance traits in determining species and community responses to altered precipitation.
Assuntos
Ecossistema , Pradaria , Clima , Secas , Folhas de PlantaRESUMO
Rangelands are temporally and spatially complex socioecological systems on which the predominant land use is livestock production. In North America, rangelands also contain approximately 80% of remaining habitat for grassland birds, a guild of species that has experienced precipitous declines since the 1970s. While livestock grazing management may benefit certain grassland bird species by generating the vegetation structure and density they prefer, these outcomes are poorly understood for avian species breeding in the shortgrass steppe. We evaluated how two grazing management systems, continuous, season-long grazing and adaptive, rest-rotational grazing, affected grassland bird abundance from 2013 to 2017 in Colorado's shortgrass steppe. We examined grazing impacts in conjunction with ecological sites, which constitute unique soil and plant communities. When grazing management was evaluated in conjunction with spatial variation in ecological sites, we found three of our five focal bird species responded to grazing management. McCown's Longspur abundance decreased in pastures rested from grazing the previous year. The effect of grazing on Horned Lark and Grasshopper Sparrow depended on ecological site: Horned Lark density was highest in pastures that were intensively grazed and Grasshopper Sparrow density was highest in pastures that were rested the previous year in the least productive ecological site. In addition, densities of all species varied across ecological sites. Our results suggest consideration of soil and vegetation characteristics can inform how adaptive management is applied on a landscape to benefit the full suite of breeding grassland birds, including species that have seemingly contrasting habitat needs. For example, a manager could target adaptive drought mitigation practices, such as resting pastures for 1 yr to generate grassbanks, in less productive soils to benefit grassland birds that prefer taller/denser vegetation structure, or could apply intensive, short-duration grazing on less productive soils to benefit species preferring shorter/sparser vegetation. A single year of intensive, short-duration grazing (i.e., one component of our rotational treatment) across the landscape, however, might not create sufficient habitat for species that prefer short/sparse vegetation in our system (e.g., McCown's Longspur). Ultimately, our study indicates how cattle production on rangelands can congruently support grassland bird populations in the shortgrass steppe.
Assuntos
Ecossistema , Aves Canoras , Animais , Bovinos , Colorado , Pradaria , Gado , América do NorteRESUMO
Rangeland ecosystems worldwide are characterized by a high degree of uncertainty in precipitation, both within and across years. Such uncertainty creates challenges for livestock managers seeking to match herbivore numbers with forage availability to prevent vegetation degradation and optimize livestock production. Here, we assess variation in annual large herbivore production (LHP, kg/ha) across multiple herbivore densities over a 78-yr period (1940-2018) in a semiarid rangeland ecosystem (shortgrass steppe of eastern Colorado, USA) that has experienced several phase changes in global-level sea surface temperature (SST) anomalies, as measured by the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO). We examined the influence of prevailing PDO phase, magnitude of late winter (February-April) ENSO, prior growing-season precipitation (prior April to prior September) and precipitation during the six months (prior October to current April) preceding the growing season on LHP. All of these are known prior to the start of the growing season in the shortgrass steppe and could potentially be used by livestock managers to adjust herbivore densities. Annual LHP was greater during warm PDO irrespective of herbivore density, while variance in LHP increased by 69% (moderate density) and 91% (high density) under cold-phase compared to warm-phase PDO. No differences in LHP attributed to PDO phase were observed with low herbivore density. ENSO effects on LHP, specifically La Niña, were more pronounced during cold-phase PDO years. High herbivore density increased LHP at a greater rate than at moderate and low densities with increasing fall and winter precipitation. Differential gain, a weighted measure of LHP under higher relative to lower herbivore densities, was sensitive to prevailing PDO phase, ENSO magnitude, and precipitation amounts from the prior growing season and current fall-winter season. Temporal hierarchical approaches using PDO, ENSO, and local-scale precipitation can enhance decision-making for flexible herbivore densities. Herbivore densities could be increased above recommended levels with lowered risk of negative returns for managers during warm-phase PDO to result in greater LHP and less variability. Conversely, during cold-phase PDO, managers should be cognizant of the additional influences of ENSO and prior fall-winter precipitation, which can help predict when to reduce herbivore densities and minimize risk of forage shortages.
Assuntos
Ecossistema , Herbivoria , Colorado , El Niño Oscilação Sul , Estações do AnoRESUMO
There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT-ANPP relationships in above- and below-average PPT years to those that occurred during sequences of multiple above- and below-average years. We found differences in PPT-ANPP relationships in above- and below-average years compared to long-term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current- and prior-year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior-year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current-year PPT declined. Although the mechanisms by which a directional change in the frequency of above- and below-average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above- vs. below-average years, and illustrate the utility of long-term data to examine these patterns.
Assuntos
Pradaria , Chuva , Mudança Climática , Poaceae/fisiologiaRESUMO
Increasing atmospheric [CO2 ] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2 ) and warming affect plant tissue chemistry through multiple direct and indirect pathways, such that the cumulative outcomes of these effects are difficult to predict. Here, we report on a 7-yr study examining effects of CO2 enrichment (to 600 ppm) and infrared warming (+1.5°C day/3°C night) under realistic field conditions on forage quality and quantity in a semiarid, mixedgrass prairie. For the three dominant forage grasses, warming effects on in vitro dry matter digestibility (IVDMD) and tissue [N] were detected only in certain years, varied from negative to positive, and were relatively minor. In contrast, eCO2 substantially reduced IVDMD (two most abundant grasses) and [N] (all three dominant grass species) in most years, except the two wettest years. Furthermore, eCO2 reduced IVDMD and [N] independent of warming effects. Reduced IVDMD with eCO2 was related both to reduced [N] and increased acid detergent fiber (ADF) content of grass tissues. For the six most abundant forage species (representing 96% of total forage production), combined warming and eCO2 increased forage production by 38% and reduced forage [N] by 13% relative to ambient climate. Although the absolute magnitude of the decline in IVDMD and [N] due to combined warming and eCO2 may seem small (e.g., from 63.3 to 61.1% IVDMD and 1.25 to 1.04% [N] for Pascopyrum smithii), such shifts could have substantial consequences for the rate at which ruminants gain weight during the primary growing season in the largest remaining rangeland ecosystem in North America. With forage production increases, declining forage quality could potentially be mitigated by adaptively increasing stocking rates, and through management such as prescribed burning, fertilization at low rates, and legume interseeding to enhance forage quality.
Assuntos
Dióxido de Carbono/efeitos adversos , Pradaria , Poaceae/efeitos dos fármacos , Animais , Biomassa , Celulose/análise , Herbivoria , Lignina/análise , Nitrogênio/análise , Poaceae/química , WyomingRESUMO
Grazing cattle redistribute nitrogen (N) consumed in forage through urine and feces patches. The high concentration of N in these patches often exceeds the uptake demands of the local plant community, thereby providing ideal conditions for losses of reactive N. However, knowledge on nitrous oxide (NO) and ammonia (NH) emissions from excretal patches on shortgrass steppe grassland is limited. We studied the effect of cattle urine (1002 kg N ha) and feces (1021 kg N ha) patches on NO and NH emissions in two sites with contrasting vegetation: (i) cool-season (C3) 'Bozoisky-Select' Russian wildrye [ (Fisch.) Nevski], pasture (C3Past) and (ii) C4-dominated native shortgrass steppe rangeland (C4SS). Nitrous oxide and NH were measured using semi-static and semi-open chambers, respectively. Cumulative NO emissions were 217 and 173% greater and cumulative volatile NH emissions were 339 and 157% greater on C3Past compared with C4SS from the urine and feces treatments, respectively. Nitrous oxide emission factors were 0.20 and 0.05% for urine and 0.07 and 0.03% for feces on C3Past and C4SS, respectively. Our findings suggest that using the IPCC Tier 1 default emission factor (2%, 95% CI = 0.7-6%) to estimate NO emissions from cattle excretal patches on shortgrass steppe grassland would result in a significant overestimation for these dryland systems. Ammonia emission factors were 35 and 10% for urine and 7 and 5% for feces on C3Past and C4SS, respectively. With the exception of the urine treatment on C3Past, observed NH emissions were consistent with the IPCC Tier 1 default assumption that 20% (95% CI = 5-50%) of excretal N is volatilized as NH+NO.
Assuntos
Amônia/análise , Fezes/química , Óxido Nitroso/análise , Urina/química , Animais , Bovinos , Pradaria , NitrogênioRESUMO
Grazing intensity elicits changes in the composition of plant functional groups in both shortgrass steppe (SGS) and northern mixed-grass prairie (NMP) in North America. How these grazing intensity-induced changes control aboveground net primary production (ANPP) responses to precipitation remains a central open question, especially in light of predicted climate changes. Here, we evaluated effects of four levels (none, light, moderate, and heavy) of long-term (>30 yr) grazing intensity in SGS and NMP on: (1) ANPP; (2) precipitation-use efficiency (PUE, ANPP : precipitation); and (3) precipitation marginal response (PMR; slope of a linear regression model between ANPP and precipitation). We advance prior work by examining: (1) the consequences of a range of grazing intensities (more grazed vs. ungrazed); and (2) how grazing-induced changes in ANPP and PUE are related both to shifts in functional group composition and physiological responses within each functional group. Spring (April-June) precipitation, the primary determinant of ANPP, was only 12% higher in NMP than in SGS, yet ANPP and PUE were 25% higher. Doubling grazing intensity in SGS and nearly doubling it in NMP reduced ANPP and PUE by only 24% and 33%, respectively. Increased grazing intensity reduced C3 graminoid biomass and increased C4 grass biomass in both grasslands. Functional group shifts affected PUE through biomass reductions, as PUE was positively associated with the relative abundance of C3 species and negatively with C4 species across both grasslands. At the community level, PMR was similar between grasslands and unaffected by grazing intensity. However, PMR of C3 graminoids in SGS was eightfold higher in the ungrazed treatment than under any grazed level. In NMP, PMR of C3 graminoids was only reduced under heavy grazing intensity. Knowing the ecological consequences of grazing intensity provides valuable information for mitigation and adaptation strategies in response to predicted climate change. For example, moderate grazing (the recommended rate) in SGS would sequester the same amount of aboveground carbon as light grazing because ANPP was nearly the same. In contrast, reductions in grazing intensity in NMP from moderate to light intensity would increase the amount of aboveground carbon sequestrated by 25% because of increased ANPP.
Assuntos
Criação de Animais Domésticos , Comportamento Alimentar/fisiologia , Pradaria , Gado/fisiologia , Chuva , Animais , Colorado , Poaceae/classificação , WyomingRESUMO
Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.
Assuntos
Biodiversidade , Dióxido de Carbono/química , Pradaria , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Solo/química , Biomassa , Carbono/metabolismo , Ciclo do Nitrogênio , Isótopos de Nitrogênio/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Microbiologia do Solo , Solanum/crescimento & desenvolvimento , Solanum/metabolismo , TexasRESUMO
Climate change drivers affect plant community productivity via three pathways: (i) direct effects of drivers on plants; (ii) the response of species abundances to drivers (community response); and (iii) the feedback effect of community change on productivity (community effect). The contribution of each pathway to driver-productivity relationships depends on functional traits of dominant species. We used data from three experiments in Texas, USA, to assess the role of community dynamics in the aboveground net primary productivity (ANPP) response of C4 grasslands to two climate drivers applied singly: atmospheric CO2 enrichment and augmented summer precipitation. The ANPP-driver response differed among experiments because community responses and effects differed. ANPP increased by 80-120g m(-2) per 100 µl l(-1) rise in CO2 in separate experiments with pasture and tallgrass prairie assemblages. Augmenting ambient precipitation by 128mm during one summer month each year increased ANPP more in native than in exotic communities in a third experiment. The community effect accounted for 21-38% of the ANPP CO2 response in the prairie experiment but little of the response in the pasture experiment. The community response to CO2 was linked to species traits associated with greater soil water from reduced transpiration (e.g. greater height). Community effects on the ANPP CO2 response and the greater ANPP response of native than exotic communities to augmented precipitation depended on species differences in transpiration efficiency. These results indicate that feedbacks from community change influenced ANPP-driver responses. However, the species traits that regulated community effects on ANPP differed from the traits that determined how communities responded to drivers.
Assuntos
Dióxido de Carbono/metabolismo , Transpiração Vegetal/fisiologia , Poaceae/fisiologia , Água/fisiologia , Biomassa , Mudança Climática , Demografia , Pradaria , TexasRESUMO
Semiarid rangelands throughout the western Great Plains support livestock production and many other ecosystem services. The degree to which adaptive multi-paddock (AMP) grazing management approaches can help achieve desired ecosystem services remains unclear. At the Central Plains Experimental Range in northeastern Colorado, a management-science partnership with a diverse stakeholder group is comparing collaborative adaptive rangeland management (CARM), designed to incorporate AMP principles, to traditional rangeland management (TRM), consisting of season-long grazing during the growing season. Each treatment was implemented on a set of 10, 130-ha pastures paired by soils, topography, and plant communities to evaluate how CARM affects vegetation (composition and production), livestock production (steer weight gain), and wildlife habitat (vegetation structure for grassland birds). For the first 5 years of the experiment, CARM cattle were managed as a single herd using AMP grazing with planned year-long rest in 20% of the pastures. Relative to TRM, CARM enhanced heterogeneity in vegetation structure across the landscape, benefiting two grassland bird species. However, this came at the cost of 12%-16% lower steer weight gains in CARM versus TRM and declining populations of a third bird species of conservation concern in both treatments. Here we discuss how increased understanding of ecological and social processes during the experiment's first 5 years led to changes in the CARM treatment and management objectives during the next 5 years. We also discuss how innovations in remote sensing, environmental sensors, ecosystem modeling, social learning, and economic analyses are being integrated into and supported by the CARM experiment.
RESUMO
Advances in global positioning system (GPS) technology have dramatically enhanced the ability to track and study distributions of free-ranging livestock. Understanding factors controlling the distribution of free-ranging livestock requires the ability to assess when and where they are foraging. For four years (2008-2011), we periodically collected GPS and activity sensor data together with direct observations of collared cattle grazing semiarid rangeland in eastern Colorado. From these data, we developed classification tree models that allowed us to discriminate between grazing and non-grazing activities. We evaluated: (1) which activity sensor measurements from the GPS collars were most valuable in predicting cattle foraging behavior, (2) the accuracy of binary (grazing, non-grazing) activity models vs. models with multiple activity categories (grazing, resting, traveling, mixed), and (3) the accuracy of models that are robust across years vs. models specific to a given year. A binary classification tree correctly removed 86.5% of the non-grazing locations, while correctly retaining 87.8% of the locations where the animal was grazing, for an overall misclassification rate of 12.9%. A classification tree that separated activity into four different categories yielded a greater misclassification rate of 16.0%. Distance travelled in a 5 minute interval and the proportion of the interval with the sensor indicating a head down position were the two most important variables predicting grazing activity. Fitting annual models of cattle foraging activity did not improve model accuracy compared to a single model based on all four years combined. This suggests that increased sample size was more valuable than accounting for interannual variation in foraging behavior associated with variation in forage production. Our models differ from previous assessments in semiarid rangeland of Israel and mesic pastures in the United States in terms of the value of different activity sensor measurements for identifying grazing activity, suggesting that the use of GPS collars to classify cattle grazing behavior will require calibrations specific to the environment and vegetation being studied.
Assuntos
Comportamento Alimentar , Sistemas de Informação Geográfica , Herbivoria/fisiologia , Animais , Bovinos , Colorado , Meio Ambiente , Humanos , IsraelRESUMO
Vesicular stomatitis viruses (VSVs) cause a condition known as vesicular stomatitis (VS), which results in painful lesions in equines, cattle, swine, and camelids, and when transmitted to humans, can cause flu-like symptoms. When animal premises are affected by VS, they are subject to a quarantine. The equine industry more broadly may incur economic losses due to interruptions of animal trade and transportation to shows, competitions, and other events. Equine owners, barn managers, and veterinarians can take proactive measures to reduce the risk of equines contracting VS. To identify appropriate risk management strategies, it helps to understand which biting insects are capable of transmitting the virus to animals, and to identify these insect vectors' preferred habitats and behaviors. We make this area of science more accessible to equine owners, barn managers, and veterinarians, by (1) translating the most relevant scientific information about biting insect vectors of VSV and (2) identifying practical management strategies that might reduce the risk of equines contracting VSV from infectious biting insects or from other equines already infected with VSV. We address transmission risk at four different spatial scales-the animal, the barn/shelter, the barnyard/premises, and the surrounding environment/neighborhood-noting that a multiscale and spatially collaborative strategy may be needed to reduce the risk of VS.
Assuntos
Doenças dos Bovinos , Doenças dos Cavalos , Doenças dos Suínos , Estomatite Vesicular , Vesiculovirus , Animais , Bovinos , Doenças dos Cavalos/prevenção & controle , Cavalos , Insetos Vetores , Suínos , Estados Unidos , Estomatite Vesicular/prevenção & controle , Vírus da Estomatite Vesicular IndianaRESUMO
Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.
Assuntos
Gafanhotos/virologia , Plantas/virologia , Vesiculovirus/isolamento & purificação , Animais , Ingestão de Alimentos , Viabilidade Microbiana , Infecções por Rhabdoviridae/transmissão , Fatores de Tempo , Estados UnidosRESUMO
⢠The glacial-to-present increase in atmospheric CO2 concentration is likely to have stimulated plant production, but experimental tests in natural ecosystems are lacking. ⢠We measured above-ground biomass production, plant nitrogen (N) accumulation, and species dynamics in a C3 /C4 grassland exposed for 4 yr (1997-2000) to a continuous gradient in CO2 from 200-560 mol mol-1 . ⢠Biomass increased with CO2 concentration in 1997-99. Biomass increases ranged between 121 and 161 g m-2 per 100 mol mol-1 rise in CO2 and were similar at subambient and superambient concentrations. Biomass responses to CO2 were determined by different species or functional groups of species during different years. Increasing CO2 accelerated a successional shift initiated by release from grazing in which C3 forbs increased at the expense of a C4 grass. Effects of CO2 on tissue N concentration varied among species and functional groups, but CO2 did not alter total N in above-ground tissues. ⢠Results imply that rising CO2 has stimulated plant production and accelerated successional change and that grasslands will remain sensitive to rising CO2 for several decades.
RESUMO
Traits that promote rapid growth and seedling recruitment when water is plentiful may become a liability when seedlings encounter drought. We tested the hypothesis that CO2 enrichment reinforces any tradeoff between growth rate and drought tolerance by exaggerating interspecific differences in maximum relative growth rate (RGR) and survivorship of drought among seedlings of five woody legumes. We studied invasive species of grasslands that differ in distribution along a rainfall gradient. Survivorship of drought at ambient CO2 concentration ([CO2]) was negatively related to RGR in well-watered seedlings in one of two experiments, but the relationship was weak because interspecific differences in RGR were small. Contrary to our hypothesis, there was no significant relationship among well-watered seedlings between RGR at ambient [CO2] and either the relative or absolute increase in RGR at elevated [CO2]. As predicted, however, CO2 enrichment reinforced interspecific differences in survivorship of seedlings exposed to similar rates of soil water depletion. Doubling [CO2] improved seedling survivorship of the most drought-tolerant species throughout the period of soil water depletion, but did not consistently affect survivorship of more drought-sensitive species. Midday xylem pressure potentials of drought-treated seedlings were less negative at elevated [CO2] than at ambient [CO2], but no other measured trait was consistently correlated with improved survivorship at high [CO2]. Carbon dioxide enrichment may not reinforce species differences in RGR, but could exaggerate interspecific differences in drought tolerance. To the extent that seedling persistence in grasslands correlates with drought survivorship, our results indicate a positive effect of CO2 enrichment on recruitment of woody legumes that are currently tolerant of drought.
Assuntos
Fabaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Acacia/crescimento & desenvolvimento , Acacia/fisiologia , Biomassa , Dióxido de Carbono/fisiologia , Desidratação , Fabaceae/fisiologia , Gleditsia/crescimento & desenvolvimento , Gleditsia/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Prosopis/crescimento & desenvolvimento , Prosopis/fisiologia , Plântula/fisiologia , Fatores de Tempo , Árvores/fisiologiaRESUMO
Responses of plants to grazing are better understood, and more predictable, than those of consumers in North American grasslands. In 2003, we began a large-scale, replicated experiment that examined the effects of grazing on three important arthropod groups-beetles, spiders, and grasshoppers-in shortgrass steppe of north-central Colorado. We investigated whether modifications of the intensity and seasonality of livestock grazing alter the structure and diversity of macroarthropod communities compared with traditional grazing practices. Treatments represented a gradient of grazing intensity by cattle and native herbivores: long-term grazing exclosures; moderate summer grazing (the traditional regime); intensive spring grazing; intensive summer grazing; and moderately summer-grazed pastures also inhabited by black-tailed prairie dogs (Cynomys ludovicianus Ord). Beetles and spiders were the most common groups captured, comprising 60% and 21%, respectively, of 4,378 total pitfall captures. Grasshopper counts were generally low, with 3,799 individuals observed and densities <4 m(-2). Two years after treatments were applied, vegetation structure differed among grazing treatments, responding not only to long-term grazing conditions, but also to the short-term, more-intensive grazing manipulations. In response, arthropods were, in general, relatively insensitive to these grazing-induced structural changes. However, species-level analyses of one group (Tenebrionidae) revealed both positive and negative effects of grazing treatments on beetle richness and activity-density. Importantly, these responses to grazing were more pronounced in a year when spring-summer rainfall was low, suggesting that both grazing and precipitation-which together may create the greatest heterogeneity in vegetation structure-are drivers of consumer responses in this system.