Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835422

RESUMO

RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases. It is highly expressed in hematopoietic cells but is also present in a large array of other cell types. RhoGDI2 has been implicated in multiple human cancers and immunity regulation, where it can display a dual role. Despite its involvement in various biological processes, we still do not have a clear understanding of its mechanistic functions. This review sheds a light on the dual opposite role of RhoGDI2 in cancer, highlights its underappreciated role in immunity and proposes ways to explain its intricate regulatory functions.


Assuntos
Imunidade , Neoplasias , Inibidor beta de Dissociação do Nucleotídeo Guanina rho , Humanos , Neoplasias/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo
2.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922580

RESUMO

The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.


Assuntos
Antineoplásicos/uso terapêutico , Homeostase , Metabolismo dos Lipídeos , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Compostos Orgânicos/metabolismo
3.
J Mol Cell Cardiol ; 135: 149-159, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31442470

RESUMO

The mitral valve is a complex multilayered structure populated by fibroblast-like cells, valvular interstitial cells (VIC) which are embedded in an extracellular matrix (ECM) scaffold and are submitted to the mechanical deformations affecting valve at each heartbeat, for an average of 40 million times per year. Myxomatous mitral valve (MMV) is the most frequent heart valve disease characterized by disruption of several valvular structures due to alterations of their ECM preventing the complete closure of the valve resulting in symptoms of prolapse and regurgitation. VIC and their ECM exhibit reciprocal dynamic processes between the mechanical signals issued from the ECM and the modulation of VIC phenotype responsible for ECM homeostasis of the valve. Abnormal perception and responsiveness of VIC to mechanical stress may induce an inappropriate adaptative remodeling of the valve progressively leading to MMV. To investigate the response of human VIC to mechanical strain and identify the molecular mechanisms of mechano-transduction in these cells, a cyclic equibiaxial elongation of 14% at the cardiac frequency of 1.16 Hz was applied to VIC by using a Flexercell-4000 T™ apparatus for increasing time (from 1 h to 8 h). We showed that cyclic stretch induces an early (1 h) and transient over-expression of TGFß2 and αSMA. CTGF, a profibrotic growth factor promoting the synthesis of ECM components, was strongly induced after 1 and 2 h of stretching and still upregulated at 8 h. The mechanical stress-induced CTGF up-regulation was dependent on RhoC, but not RhoA, as demonstrated by siRNA-mediated silencing approaches, and further supported by evidencing RhoC activation upon cell stretching and suppression of cell response by pharmacological inhibition of the effector ROCK1/2. It was also dependent on the MEK/Erk1/2 pathway which was activated by mechanical stress independently of RhoC and ROCK. Finally, mechanical stretching induced the nuclear translocation of myocardin related transcription factor-A (MRTF-A) which forms a transcriptional complex with SRF to promote the expression of target genes, notably CTGF. Treatment of stretched cultures with inhibitors of the identified pathways (ROCK1/2, MEK/Erk1/2, MRTF-A translocation) blocked CTGF overexpression and abrogated the increased MRTF-A nuclear translocation. CTGF is up-regulated in many pathological processes involving mechanically challenged organs, promotes ECM accumulation and is considered as a hallmark of fibrotic diseases. Pharmacological targeting of MRTF-A by newly developed inhibitors may represent a relevant therapy for MMV.


Assuntos
Estenose da Valva Aórtica/genética , Calcinose/genética , Fibrose/genética , Valva Mitral/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Fibrose/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Valva Mitral/patologia , Estresse Mecânico , Transativadores/genética , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
5.
EMBO J ; 32(18): 2491-503, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23955003

RESUMO

To supply tissues with nutrients and oxygen, the cardiovascular system forms a seamless, hierarchically branched, network of lumenized tubes. Here, we show that maintenance of patent vessel lumens requires the Bα regulatory subunit of protein phosphatase 2A (PP2A). Deficiency of Bα in zebrafish precludes vascular lumen stabilization resulting in perfusion defects. Similarly, inactivation of PP2A-Bα in cultured ECs induces tubulogenesis failure due to alteration of cytoskeleton dynamics, actomyosin contractility and maturation of cell-extracellular matrix (ECM) contacts. Mechanistically, we show that PP2A-Bα controls the activity of HDAC7, an essential transcriptional regulator of vascular stability. In the absence of PP2A-Bα, transcriptional repression by HDAC7 is abrogated leading to enhanced expression of the cytoskeleton adaptor protein ArgBP2. ArgBP2 hyperactivates RhoA causing inadequate rearrangements of the EC actomyosin cytoskeleton. This study unravels the first specific role for a PP2A holoenzyme in development: the PP2A-Bα/HDAC7/ArgBP2 axis maintains vascular lumens by balancing endothelial cytoskeletal dynamics and cell-matrix adhesion.


Assuntos
Endotélio Vascular/fisiologia , Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Neovascularização Fisiológica/fisiologia , Proteína Fosfatase 2/metabolismo , Grau de Desobstrução Vascular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Adesão Celular/fisiologia , Colágeno , Combinação de Medicamentos , Imunofluorescência , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Processamento de Imagem Assistida por Computador , Laminina , Microscopia Confocal , Proteoglicanas , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Grau de Desobstrução Vascular/genética , Peixe-Zebra
6.
FASEB J ; 28(9): 4077-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24903274

RESUMO

Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects.


Assuntos
Fenômenos Fisiológicos Celulares , Osteoblastos/metabolismo , RNA Interferente Pequeno/genética , Ausência de Peso , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Sensação Gravitacional , Humanos , Mecanotransdução Celular , Microtúbulos/metabolismo , Osteoblastos/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Voo Espacial , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética
7.
Angiogenesis ; 16(2): 353-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23254820

RESUMO

VEGF-A is a crucial growth factor for blood vessel homeostasis and pathological angiogenesis. Due to alternative splicing of its pre-mRNA, VEGF-A is produced under several isoforms characterized by the combination of their C-terminal domains, which determines their respective structure, availability and affinity for co-receptors. As controversies still exist about the specific roles of these exon-encoded domains, we systematically compared the properties of eight natural and artificial variants containing the domains encoded by exons 1-4 and various combinations of the domains encoded by exons 5, 7 and 8a or 8b. All the variants (VEGF111a, VEGF111b, VEGF121a, VEGF121b, VEGF155a, VEGF155b, VEGF165a, VEGF165b) have a similar affinity for VEGF-R2, as determined by Surface plasmon resonance analyses. They strongly differ however in terms of binding to neuropilin-1 and heparin/heparan sulfate proteoglycans. Data indicate that the 6 amino acids encoded by exon 8a must be present and cooperate with those of exons 5 or 7 for efficient binding, which was confirmed in cell culture models. We further showed that VEGF165b has inhibitory effects in vitro, as previously reported, but that the shortest VEGF variant possessing also the 6 amino acids encoded by exon 8b (VEGF111b) is remarkably proangiogenic, demonstrating the critical importance of domain interactions for defining the VEGF properties. The number, size and localization of newly formed blood vessels in a model of tumour angiogenesis strongly depend also on the C-terminal domain composition, suggesting that association of several VEGF isoforms may be more efficient for treating ischemic diseases than the use of any single variant.


Assuntos
Neovascularização Patológica , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Processamento Alternativo , Sequência de Bases , Western Blotting , Permeabilidade Capilar , Clonagem Molecular , Primers do DNA , Células HEK293 , Humanos , Imuno-Histoquímica , Ligantes , Fosforilação , Ligação Proteica , Proteólise , Ressonância de Plasmônio de Superfície , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Cancer Lett ; 569: 216306, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442366

RESUMO

Bidirectional interactions between cancer cells and their microenvironment govern tumor progression. Among the stromal cells in this microenvironment, adipocytes have been reported to upregulate cancer cell migration and invasion by producing fatty acids. Conversely, cancer cells alter adipocyte phenotype notably via increased lipolysis. We aimed to identify the mechanisms through which cancer cells trigger adipocyte lipolysis and evaluate the functional consequences on cancer progression. Here, we show that cancer cell-induced acidification of the extracellular medium strongly promotes preadipocyte lipolysis through a mechanism that does not involve lipophagy but requires adipose triglyceride lipase (ATGL) activity. This increased lipolysis is triggered mainly by attenuation of the G0/G1 switch gene 2 (G0S2)-induced inhibition of ATGL. G0S2-mediated regulation in preadipocytes affects their communication with breast cancer cells, modifying the phenotype of the cancer cells and increasing their resistance to chemotherapeutic agents in vitro. Furthermore, we demonstrate that the adipocyte-specific overexpression of G0S2 impairs mammary tumor growth and lung metastasis formation in vivo. Our results highlight the importance of acidosis in cancer cell-adipocyte crosstalk and identify G0S2 as the main regulator of cancer-induced lipolysis, regulating tumor establishment and spreading.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Lipase/metabolismo , Adipócitos/metabolismo , Lipólise , Fenômenos Fisiológicos Celulares
9.
NPJ Microgravity ; 9(1): 91, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104197

RESUMO

In space, cells sustain strong modifications of their mechanical environment. Mechanosensitive molecules at the cell membrane regulate mechanotransduction pathways that induce adaptive responses through the regulation of gene expression, post-translational modifications, protein interactions or intracellular trafficking, among others. In the current study, human osteoblastic cells were cultured on the ISS in microgravity and at 1 g in a centrifuge, as onboard controls. RNAseq analyses showed that microgravity inhibits cell proliferation and DNA repair, stimulates inflammatory pathways and induces ferroptosis and senescence, two pathways related to ageing. Morphological hallmarks of senescence, such as reduced nuclear size and changes in chromatin architecture, proliferation marker distribution, tubulin acetylation and lysosomal transport were identified by immunofluorescence microscopy, reinforcing the hypothesis of induction of cell senescence in microgravity during space flight. These processes could be attributed, at least in part, to the regulation of YAP1 and its downstream effectors NUPR1 and CKAP2L.

10.
Angiogenesis ; 15(4): 543-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22584896

RESUMO

Histone deacetylases (HDACs) are a family of 18 enzymes that deacetylate lysine residues of both histone and nonhistone proteins and to a large extent govern the process of angiogenesis. Previous studies have shown that specific inhibition of HDAC7 blocks angiogenesis both in vitro and in vivo. However, the underlying molecular mechanisms are not fully understood and hence preclude any meaningful development of suitable therapeutic modalities. The goal of the present study was to further the understanding of HDAC7 epigenetic control of angiogenesis in human endothelial cells using the proteomic approach. The underlying problem was approached through siRNA-mediated gene-expression silencing of HDAC7 in human umbilical vein endothelial cells (HUVECs). To this end, HUVEC proteins were extracted and proteomically analyzed. The emphasis was placed on up-regulated proteins, as these may represent potential direct epigenetic targets of HDAC7. Among several proteins, A-kinase anchor protein 12 (AKAP12) was the most reproducibly up-regulated protein following HDAC7 depletion. This overexpression of AKAP12 was responsible for the inhibition of migration and tube formation in HDAC7-depleted HUVEC. Mechanistically, H3 histones associated with AKAP12 promoter were acetylated following the removal of HDAC7, leading to an increase in its mRNA and protein levels. AKAP12 is responsible for protein kinase C mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3). Phosphorylated STAT3 increasingly binds to the chromatin and AKAP12 promoter and is necessary for maintaining the elevated levels of AKAP12 following HDAC7 knockdown. We demonstrated for the first time that AKAP12 tumor/angiogenesis suppressor gene is an epigenetic target of HDAC7, whose elevated levels lead to a negative regulation of HUVEC migration and inhibit formation of tube-like structures.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , Endotélio Vascular/enzimologia , Epigênese Genética , Histona Desacetilases/metabolismo , Neovascularização Fisiológica/genética , Sequência de Bases , Células Cultivadas , Imunoprecipitação da Cromatina , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/fisiologia , Fosforilação , Regiões Promotoras Genéticas , Proteína Quinase C/metabolismo , RNA Interferente Pequeno , Fator de Transcrição STAT3/metabolismo
11.
Eur J Immunol ; 41(11): 3240-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21830210

RESUMO

Human papillomavirus (HPV) infections account for more than 50% of infection-linked cancers in women worldwide. The immune system controls, at least partially, viral infection and around 90% of HPV-infected women clear the virus within two years. However, it remains unclear which immune cells are implicated in this process and no study has evaluated the direct interaction between HPVs and NK cells, a key player in host resistance to viruses and tumors. We demonstrated an NK-cell infiltration in HPV-associated preneoplastic cervical lesions. Since HPVs cannot grow in vitro, virus-like particles (VLPs) were used as a model for studying the NK-cell response against the virus. Interestingly, NK cells displayed higher cytotoxic activity and cytokine production (TNF-α and IFN-γ) in the presence of HPV-VLPs. Using flow cytometry and microscopy, we observed that NK-cell stimulation was linked to rapid VLP entry into these cells by macropinocytosis. Using CD16(+) and CD16(-) NK-cell lines and a CD16-blocking antibody, we demonstrated that CD16 is necessary for HPV-VLP internalization, as well as for degranulation and cytokine production. Thus, we show for the first time that NK cells interact with HPVs and can participate in the immune response against HPV-induced lesions.


Assuntos
Carcinoma de Células Escamosas/virologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Papillomaviridae/imunologia , Receptores de IgG/imunologia , Neoplasias do Colo do Útero/virologia , Western Blotting , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Separação Celular , Citocinas/metabolismo , Feminino , Humanos , Imunoprecipitação , Células Matadoras Naturais/metabolismo , Microscopia Confocal , Infecções por Papillomavirus/imunologia , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/virologia , Receptores de IgG/biossíntese , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo , Internalização do Vírus , Displasia do Colo do Útero/imunologia , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/virologia
12.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316211

RESUMO

The capacity of ADAMTS3 to cleave pro-VEGFC into active VEGFC able to bind its receptors and to stimulate lymphangiogenesis has been clearly established during embryonic life. However, this function of ADAMTS3 is unlikely to persist in adulthood because of its restricted expression pattern after birth. Because ADAMTS2 and ADAMTS14 are closely related to ADAMTS3 and are mainly expressed in connective tissues where the lymphatic network extends, we hypothesized that they could substitute for ADAMTS3 during adulthood in mammals allowing proteolytic activation of pro-VEGFC. Here, we demonstrated that ADAMTS2 and ADAMTS14 are able to process pro-VEGFC into active VEGFC as efficiently as ADAMTS3. In vivo, adult mice lacking Adamts2 developed skin lymphedema due to a reduction of the density and diameter of lymphatic vessels, leading to a decrease of lymphatic functionality, while genetic ablation of Adamts14 had no impact. In a model of thermal cauterization of cornea, lymphangiogenesis was significantly reduced in Adamts2- and Adamts14-KO mice and further repressed in Adamts2/Adamts14 double-KO mice. In summary, we have demonstrated that ADAMTS2 and ADAMTS14 are as efficient as ADAMTS3 in activation of pro-VEGFC and are involved in the homeostasis of the lymphatic vasculature in adulthood, both in physiological and pathological processes.


Assuntos
Vasos Linfáticos , Linfedema , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Animais , Homeostase , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Linfedema/genética , Linfedema/metabolismo , Mamíferos/metabolismo , Camundongos
13.
Biomacromolecules ; 12(9): 3194-204, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21761871

RESUMO

The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant cutaneous resident cells. Three-dimensional chitosan nanofibrillar scaffolds produced by electrospinning were compared with evaporated films and freeze-dried sponges for their biological properties. The nanofibrillar structure strongly improved cell adhesion and proliferation in vitro. When implanted in mice, the nanofibrillar scaffold was colonized by mesenchymal cells and blood vessels. Accumulation of collagen fibrils was also observed. In contrast, sponges induced a foreign body granuloma. When used as a dressing covering full-thickness skin wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis compartments. Altogether our data illustrate the critical importance of the nanofibrillar structure of chitosan devices for their full biocompatibility and demonstrate the significant beneficial effect of chitosan as a wound-healing biomaterial.


Assuntos
Materiais Biocompatíveis/química , Quitosana , Microfibrilas/metabolismo , Nanofibras/química , Pele/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Quitosana/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Granuloma , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Microfibrilas/química , Microfibrilas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Pele/crescimento & desenvolvimento , Cicatrização/fisiologia
14.
J Immunol ; 183(4): 2801-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19635923

RESUMO

ATP, released at the leading edge of migrating neutrophils, amplifies chemotactic signals. The aim of our study was to investigate whether neutrophils express ATP-gated P2X(1) ion channels and whether these channels could play a role in chemotaxis. Whole-cell patch clamp experiments showed rapidly desensitizing currents in both human and mouse neutrophils stimulated with P2X(1) agonists, alphabeta-methylene ATP (alphabetaMeATP) and betagammaMeATP. These currents were strongly impaired or absent in neutrophils from P2X(1)(-/-) mice. In Boyden chamber assays, alphabetaMeATP provoked chemokinesis and enhanced formylated peptide- and IL-8-induced chemotaxis of human neutrophils. This agonist similarly increased W-peptide-induced chemotaxis of wild-type mouse neutrophils, whereas it had no effect on P2X(1)(-/-) neutrophils. In human as in mouse neutrophils, alphabetaMeATP selectively activated the small RhoGTPase RhoA that caused reversible myosin L chain phosphorylation. Moreover, the alphabetaMeATP-elicited neutrophil movements were prevented by the two Rho kinase inhibitors, Y27632 and H1152. In a gradient of W-peptide, P2X(1)(-/-) neutrophils migrated with reduced speed and displayed impaired trailing edge retraction. Finally, neutrophil recruitment in mouse peritoneum upon Escherichia coli injection was enhanced in wild-type mice treated with alphabetaMeATP, whereas it was significantly impaired in the P2X(1)(-/-) mice. Thus, activation of P2X(1) ion channels by ATP promotes neutrophil chemotaxis, a process involving Rho kinase-dependent actomyosin-mediated contraction at the cell rear. These ion channels may therefore play a significant role in host defense and inflammation.


Assuntos
Quimiotaxia de Leucócito/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores Purinérgicos P2/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actomiosina/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Quimiotaxia de Leucócito/genética , Ativação Enzimática/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Neutrófilos/citologia , Neutrófilos/enzimologia , Cavidade Peritoneal/citologia , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X , Proteína rhoA de Ligação ao GTP/fisiologia
15.
Front Mol Biosci ; 8: 643178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816558

RESUMO

A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2 and ADAMTS14 were originally known for their ability to cleave the aminopropeptides of fibrillar collagens. Previous work using N-terminomic approach (N-TAILS) in vitro led to the identification of new substrates, including some molecules involved in TGF-ß signaling. Here, N-TAILS was used to investigate the substrates of these two enzymes in vivo, by comparing the N-terminomes of the skin of wild type mice, mice deficient in ADAMTS2, in ADAMTS14 and in both ADAMTS2 and ADAMTS14. This study identified 68 potential extracellular and cell surface proteins, with the majority of them being cleaved by both enzymes. These analyses comfort their role in collagen matrix organization and suggest their implication in inflammatory processes. Regarding fibrillar collagen, this study demonstrates that both ADAMTS2 and ADAMTS14 are involved in the processing of the aminopropeptide of alpha1 and alpha2 type V collagen. It also revealed the existence of several cleavage sites in the Col1 domain and in the C-propeptide of type I collagens. In addition to collagens and other extracellular proteins, two major components of the cell cytoskeleton, actin and vimentin, were also identified as potential substrates. The latter data were confirmed in vitro using purified enzymes and could potentially indicate other functions for ADAMTS2 and 14. This original investigation of mouse skin degradomes by N-terminomic highlights the essential role of ADAMTS2 and ADAMTS14 in collagen matrix synthesis and turnover, and gives clues to better understand their functions in skin pathophysiology. Data are available via ProteomeXchange with identifier PXD022179.

16.
Circ Res ; 101(12): 1237-46, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17947801

RESUMO

Global inhibition of class I and II histone deacetylases (HDACs) impairs angiogenesis. Herein, we have undertaken the identification of the specific HDAC(s) with activity that is necessary for the development of blood vessels. Using small interfering RNAs, we observed that HDAC7 silencing in endothelial cells altered their morphology, their migration, and their capacity to form capillary tube-like structures in vitro but did not affect cell adhesion, proliferation, or apoptosis. Among several factors known to be involved in angiogenesis, platelet-derived growth factor-B (PDGF-B) and its receptor (PDGFR-beta) were the most upregulated genes following HDAC7 silencing. We demonstrated that their increased expression induced by HDAC7 silencing was partially responsible for the inhibition of endothelial cell migration. In addition, we have also shown that treatment of endothelial cells with phorbol 12-myristate 13-acetate resulted in the exportation of HDAC7 out of the nucleus through a protein kinase C/protein kinase D activation pathway and induced, similarly to HDAC7 silencing, an increase in PDGF-B expression, as well as a partial inhibition of endothelial cell migration. Collectively, these data identified HDAC7 as a key modulator of endothelial cell migration and hence angiogenesis, at least in part, by regulating PDGF-B/PDGFR-beta gene expression. Because angiogenesis is required for tumor progression, HDAC7 may represent a rational target for therapeutic intervention against cancer.


Assuntos
Movimento Celular/genética , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Inativação Gênica/fisiologia , Histona Desacetilases/genética , Neovascularização Fisiológica/genética , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Inibidores de Histona Desacetilases , Histona Desacetilases/biossíntese , Humanos , Fator de Crescimento Derivado de Plaquetas/biossíntese , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptores do Fator de Crescimento Derivado de Plaquetas/biossíntese , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Regulação para Cima/genética
17.
Cell Death Dis ; 10(7): 512, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273193

RESUMO

Muscle formation is controlled by a number of key myogenic transcriptional regulators that govern stage-specific gene expression programs and act as terminal effectors of intracellular signaling pathways. To date, the role of phosphatases in the signaling cascades instructing muscle development remains poorly understood. Here, we show that a specific PP2A-B55δ holoenzyme is necessary for skeletal myogenesis. The primary role of PP2A-B55δ is to dephosphorylate histone deacetylase 4 (HDAC4) following myocyte differentiation and ensure repression of Myocyte enhancer factor 2D (MEF2D)-dependent gene expression programs during myogenic fusion. As a crucial HDAC4/MEF2D target gene that governs myocyte fusion, we identify ArgBP2, an upstream inhibitor of Abl, which itself is a repressor of CrkII signaling. Consequently, cells lacking PP2A-B55δ show upregulation of ArgBP2 and hyperactivation of CrkII downstream effectors, including Rac1 and FAK, precluding cytoskeletal and membrane rearrangements associated with myoblast fusion. Both in vitro and in zebrafish, loss-of-function of PP2A-B55δ severely impairs fusion of myocytes and formation of multinucleated muscle fibers, without affecting myoblast differentiation. Taken together, our results establish PP2A-B55δ as the first protein phosphatase to be involved in myoblast fusion and suggest that reversible phosphorylation of HDAC4 may coordinate differentiation and fusion events during myogenesis.


Assuntos
Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Fusão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Embrião não Mamífero/metabolismo , Holoenzimas/metabolismo , Camundongos , Morfogênese , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Fenótipo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
J Cell Biochem ; 103(3): 857-64, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17615554

RESUMO

Rac1 is a Rho subfamily small GTPase which is highly expressed in epidermal keratinocytes. In mice the significance of Rac1 for the maintenance of the epidermis has been controversial. In keratinocytes from human origin, the role of Rac1 in the control of growth/differentiation is still obscure. In this study we used RNA interference to induce specific inhibition of Rac1 expression in cultured human keratinocytes and analyzed the consequences on proliferation and differentiation. We found that the autocrine proliferation of keratinocytes is unaltered by Rac1 silencing. However, the suppression of Rac1 induced premature differentiation as revealed by the expression of markers (keratin 10, involucrin), but the involved mechanism is independent of the activity of p38 mitogen-activated protein kinase. Rather, we found that the effects of Rac1 silencing on keratinocytes differentiation are concomitant with negative regulation of the Ser62/Thr58 phosphorylation on the transcription factor c-myc, a mechanism known to control post-translational stability of the c-myc protein. Thus, in growing human keratinocytes, Rac1 could impede the expression of premature differentiation markers, probably by exerting positive control on c-myc activity and its binding to specific promoters.


Assuntos
Proliferação de Células , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Queratinócitos/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , Pele/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
19.
Free Radic Biol Med ; 44(9): 1732-51, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18325348

RESUMO

The role of TGF-beta1 in hydrogen peroxide-induced senescence-like morphogenesis has been described. The aim of this work was to investigate whether TGF-beta1-independent changes in protein synthesis are involved in this morphogenesis and to study possible mechanisms occurring earlier than TGF-beta1 overexpression. Among the multiple TGF-beta1-independent changes in protein neosynthesis, followed or not by posttranslational modifications, identified by proteomic analysis herein, those of ezrin, L-caldesmon, and HSP27 were particularly studied. Rho-GTPase cdc42 was shown to be responsible for p38(MAPK) activation, in turn triggering phosphorylation of L-caldesmon and HSP27. Cdc42 was also shown to be mainly responsible for the increase in TGF-beta1 mRNA level observed at 24 h after treatment with H(2)O(2) and onward. This study further clarified the mechanisms of senescence-like morphogenesis in addition to the previously demonstrated role of TGF-beta1 signaling pathways.


Assuntos
Fibroblastos/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a Calmodulina/farmacologia , Sobrevivência Celular , Senescência Celular , Eletroforese em Gel Bidimensional , Radicais Livres , Humanos , Peróxido de Hidrogênio/química , Modelos Biológicos , Estresse Oxidativo , Fenótipo , Fosforilação
20.
Sci Rep ; 8(1): 7050, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728578

RESUMO

Propranolol, a widely used non-selective beta-adrenergic receptor blocker, was recently shown to display anticancer properties. Its potential to synergize with certain drugs has been also outlined. However, it is necessary to take into account all the properties of propranolol to select a drug that could be efficiently combined with. Propranolol was reported to block the late phase of autophagy. Hence, we hypothesized that in condition enhancing autophagy flux, cancer cells should be especially sensitive to propranolol. 2DG, a glycolysis inhibitor, is an anti-tumor agent having limited effect in monotherapy notably due to induction of pro-survival autophagy. Here, we report that treatment of cancer cells with propranolol in combination with the glycolysis inhibitor 2DG induced a massive accumulation of autophagosome due to autophagy blockade. The propranolol +2DG treatment efficiently prevents prostate cancer cell proliferation, induces cell apoptosis, alters mitochondrial morphology, inhibits mitochondrial bioenergetics and aggravates ER stress in vitro and also suppresses tumor growth in vivo. Our study underlines for the first time the interest to take advantage of the ability of propranolol to inhibit autophagy to design new anti-cancer therapies.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Glucose/metabolismo , Propranolol/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA