Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
2.
J Hepatol ; 79(4): 898-909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230231

RESUMO

BACKGROUND & AIMS: Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS: We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS: RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS: Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS: Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.


Assuntos
Derivação Gástrica , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/cirurgia , Transcriptoma , Obesidade/complicações , Colesterol , Homeostase , Inflamação/complicações , Obesidade Mórbida/complicações
3.
Hepatology ; 73(3): 920-936, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32394476

RESUMO

BACKGROUND AND AIMS: Nonalcoholic steatohepatitis (NASH) is considered as a pivotal stage in nonalcoholic fatty liver disease (NAFLD) progression, given that it paves the way for severe liver injuries such as fibrosis and cirrhosis. The etiology of human NASH is multifactorial, and identifying reliable molecular players and/or biomarkers has proven difficult. Together with the inappropriate consideration of risk factors revealed by epidemiological studies (altered glucose homeostasis, obesity, ethnicity, sex, etc.), the limited availability of representative NASH cohorts with associated liver biopsies, the gold standard for NASH diagnosis, probably explains the poor overlap between published "omics"-defined NASH signatures. APPROACH AND RESULTS: Here, we have explored transcriptomic profiles of livers starting from a 910-obese-patient cohort, which was further stratified based on stringent histological characterization, to define "NoNASH" and "NASH" patients. Sex was identified as the main factor for data heterogeneity in this cohort. Using powerful bootstrapping and random forest (RF) approaches, we identified reliably differentially expressed genes participating in distinct biological processes in NASH as a function of sex. RF-calculated gene signatures identified NASH patients in independent cohorts with high accuracy. CONCLUSIONS: This large-scale analysis of transcriptomic profiles from human livers emphasized the sexually dimorphic nature of NASH and its link with fibrosis, calling for the integration of sex as a major determinant of liver responses to NASH progression and responses to drugs.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/metabolismo , Fatores de Risco , Fatores Sexuais , Transcriptoma
4.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037071

RESUMO

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Obesidade/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuína 1/genética
5.
Am J Physiol Endocrinol Metab ; 320(4): E772-E783, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491532

RESUMO

The alimentary limb has been proposed to be a key driver of the weight-loss-independent metabolic improvements that occur upon bariatric surgery. However, the one anastomosis gastric bypass (OAGB) procedure, consisting of one long biliary limb and a short common limb, induces similar beneficial metabolic effects compared to Roux-en-Y Gastric Bypass (RYGB) in humans, despite the lack of an alimentary limb. The aim of this study was to assess the role of the length of biliary and common limbs in the weight loss and metabolic effects that occur upon OAGB. OAGB and sham surgery, with or without modifications of the length of either the biliary limb or the common limb, were performed in Gottingen minipigs. Weight loss, metabolic changes, and the effects on plasma and intestinal bile acids (BAs) were assessed 15 days after surgery. OAGB significantly decreased body weight, improved glucose homeostasis, increased postprandial GLP-1 and fasting plasma BAs, and qualitatively changed the intestinal BA species composition. Resection of the biliary limb prevented the body weight loss effects of OAGB and attenuated the postprandial GLP-1 increase. Improvements in glucose homeostasis along with changes in plasma and intestinal BAs occurred after OAGB regardless of the biliary limb length. Resection of only the common limb reproduced the glucose homeostasis effects and the changes in intestinal BAs. Our results suggest that the changes in glucose metabolism and BAs after OAGB are mainly mediated by the length of the common limb, whereas the length of the biliary limb contributes to body weight loss.NEW & NOTEWORTHY Common limb mediates postprandial glucose metabolism change after gastric bypass whereas biliary limb contributes to weight loss.


Assuntos
Ácidos e Sais Biliares/metabolismo , Sistema Biliar/patologia , Ducto Colédoco/patologia , Derivação Gástrica/métodos , Glucose/metabolismo , Anastomose Cirúrgica/métodos , Animais , Ácidos e Sais Biliares/sangue , Sistema Biliar/metabolismo , Procedimentos Cirúrgicos do Sistema Biliar/métodos , Glicemia/metabolismo , Ducto Colédoco/metabolismo , Ducto Colédoco/cirurgia , Feminino , Modelos Animais , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Período Pós-Prandial , Distribuição Aleatória , Suínos , Porco Miniatura , Redução de Peso/fisiologia
6.
Int J Obes (Lond) ; 45(7): 1607-1617, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934108

RESUMO

BACKGROUND/OBJECTIVES: Innate lymphoid cells (ILCs) play an important role in the maintenance of immune and metabolic homeostasis in adipose tissue (AT). The crosstalk between AT ILCs and adipocytes and other immune cells coordinates adipocyte differentiation, beiging, glucose metabolism and inflammation. Although the metabolic and homeostatic functions of mouse ILCs have been extensively investigated, little is known about human adipose ILCs and their roles in obesity and insulin resistance (IR). SUBJECTS/METHODS: Here we characterized T and NK cell populations in omental AT (OAT) from women (n = 18) with morbid obesity and varying levels of IR and performed an integrated analysis of metabolic parameters and adipose tissue transcriptomics. RESULTS: In OAT, we found a distinct population of CD56-NKp46+EOMES+ NK cells characterized by expression of cytotoxic molecules, pro-inflammatory cytokines, and markers of cell activation. AT IFNγ+ NK cells, but not CD4, CD8 or γδ T cells, were positively associated with glucose levels, glycated hemoglobin (HbA1c) and IR. AT NK cells were linked to a pro-inflammatory gene expression profile in AT and developed an effector phenotype in response to IL-12 and IL-15. Moreover, integrated transcriptomic analysis revealed a potential implication of AT IFNγ+ NK cells in controlling adipose tissue inflammation, remodeling, and lipid metabolism. CONCLUSIONS: Our results suggest that a distinct IFNγ-producing NK cell subset is involved in metabolic homeostasis in visceral AT in humans with obesity and may be a potential target for therapy of IR.


Assuntos
Hiperglicemia/metabolismo , Resistência à Insulina/fisiologia , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Obesidade Mórbida/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Genome Res ; 27(6): 985-996, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28400425

RESUMO

Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.


Assuntos
Genoma , Fígado/metabolismo , Elementos Reguladores de Transcrição , Transcrição Gênica , Algoritmos , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Camundongos , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética
8.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Circ Res ; 121(1): 19-30, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28438779

RESUMO

RATIONALE: Vascular calcification is a process similar to bone formation leading to an inappropriate deposition of calcium phosphate minerals in advanced atherosclerotic plaques. Monocyte-derived macrophages, located in atherosclerotic lesions and presenting heterogeneous phenotypes, from classical proinflammatory M1 to alternative anti-inflammatory M2 macrophages, could potentially display osteoclast-like functions. OBJECTIVE: To characterize the phenotype of macrophages located in areas surrounding the calcium deposits in human atherosclerotic plaques. METHODS AND RESULTS: Macrophages near calcium deposits display an alternative phenotype being both CD68 and mannose receptor-positive, expressing carbonic anhydrase type II, but relatively low levels of cathepsin K. In vitro interleukin-4-polarization of human primary monocytes into macrophages results in lower expression and activity of cathepsin K compared with resting unpolarized macrophages. Moreover, interleukin-4 polarization lowers expression levels of the osteoclast transcriptional activator nuclear factor of activated T cells type c-1, associated with increased gene promoter levels of the transcriptional repression mark H3K27me3 (histone 3 lysine 27 trimethylation). Despite higher expression of the receptor activator of nuclear factor κB receptor, receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor induction of nuclear factor of activated T cells type c-1 and cathepsin K expression is defective in these macrophages because of reduced Erk/c-fos-mediated downstream signaling resulting in impaired bone resorption capacity. CONCLUSIONS: These results indicate that macrophages surrounding calcium deposits in human atherosclerotic plaques are phenotypically defective being unable to resorb calcification.


Assuntos
Reabsorção Óssea/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo , Placa Aterosclerótica/metabolismo , Ligante RANK/metabolismo , Calcificação Vascular/metabolismo , Reabsorção Óssea/patologia , Células Cultivadas , Humanos , Microdissecção e Captura a Laser/métodos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Macrófagos/patologia , Osteoclastos/patologia , Placa Aterosclerótica/patologia , Calcificação Vascular/patologia
10.
J Hepatol ; 63(1): 164-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25703085

RESUMO

BACKGROUND & AIMS: Peroxisome proliferator-activated receptors (PPARs) have been implicated in non-alcoholic steatohepatitis (NASH) pathogenesis, mainly based on animal data. Gene expression data in NASH patients are scarce. We studied liver PPARα, ß/δ, and γ expression in a large cohort of obese patients assessed for presence of NAFLD at baseline and 1 year follow-up. METHODS: Patients presented to the obesity clinic underwent a hepatic work-up. If NAFLD was suspected, liver biopsy was performed. Gene expression was studied by mRNA quantification. Patients were reassessed after 1 year. RESULTS: 125 patients were consecutively included in the study, of which 85 patients had paired liver biopsy taken at 1 year of follow-up. Liver PPARα expression negatively correlated with the presence of NASH (p=0.001) and with severity of steatosis (p=0.003), ballooning (p=0.001), NASH activity score (p=0.008) and fibrosis (p=0.003). PPARα expression was positively correlated to adiponectin (R(2)=0.345, p=0.010) and inversely correlated to visceral fat (R(2)=-0.343, p<0.001), HOMA IR (R(2)=-0.411, p<0.001) and CK18 (R(2)=-0.233, p=0.012). Liver PPARß/δ and PPARγ expression did not correlate with any histological feature nor with glucose metabolism or serum lipids. At 1 year, correlation of PPARα expression with liver histology was confirmed. In longitudinal analysis, an increase in expression of PPARα and its target genes was significantly associated with histological improvement (p=0.008). CONCLUSION: Human liver PPARα gene expression negatively correlates with NASH severity, visceral adiposity and insulin resistance and positively with adiponectin. Histological improvement is associated with an increase in expression of PPARα and its target genes. These data might suggest that PPARα is a potential therapeutic target in NASH.


Assuntos
Regulação da Expressão Gênica , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética , RNA/genética , Adolescente , Adulto , Idoso , Biópsia , Feminino , Seguimentos , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , PPAR alfa/biossíntese , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
11.
Circ Res ; 113(11): 1196-205, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24036496

RESUMO

RATIONALE: In atherosclerotic plaques, iron preferentially accumulates in macrophages where it can exert pro-oxidant activities. OBJECTIVE: The objective of this study was, first, to better characterize the iron distribution and metabolism in macrophage subpopulations in human atherosclerotic plaques and, second, to determine whether iron homeostasis is under the control of nuclear receptors, such as the liver X receptors (LXRs). METHODS AND RESULTS: Here we report that iron depots accumulate in human atherosclerotic plaque areas enriched in CD68 and mannose receptor (MR)-positive (CD68(+)MR(+)) alternative M2 macrophages. In vitro IL-4 polarization of human monocytes into M2 macrophages also resulted in a gene expression profile and phenotype favoring iron accumulation. However, M2 macrophages on iron exposure acquire a phenotype favoring iron release, through a strong increase in ferroportin expression, illustrated by a more avid oxidation of extracellular low-density lipoprotein by iron-loaded M2 macrophages. In line, in human atherosclerotic plaques, CD68(+)MR(+) macrophages accumulate oxidized lipids, which activate LXRα and LXRß, resulting in the induction of ABCA1, ABCG1, and apolipoprotein E expression. Moreover, in iron-loaded M2 macrophages, LXR activation induces nuclear factor erythroid 2-like 2 expression, thereby increasing ferroportin expression, which, together with a decrease of hepcidin mRNA levels, promotes iron export. CONCLUSIONS: These data identify a role for M2 macrophages in iron handling, a process regulated by LXR activation.


Assuntos
Ferro/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Receptores Nucleares Órfãos/fisiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apolipoproteínas E/metabolismo , Transporte Biológico/fisiologia , Células Cultivadas , Homeostase/fisiologia , Humanos , Técnicas In Vitro , Lectinas Tipo C/metabolismo , Receptores X do Fígado , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Fenótipo , Receptores de Superfície Celular/metabolismo
12.
Metabolism ; 151: 155720, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926201

RESUMO

BACKGROUND AND AIMS: Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression. APPROACH AND RESULTS: In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload. CONCLUSIONS: FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Animais , Humanos , Camundongos , Progressão da Doença , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Doenças Metabólicas/metabolismo , PPAR alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
13.
JHEP Rep ; 6(1): 100948, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125300

RESUMO

Background & Aims: Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods: Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results: Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion: MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications: This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.

14.
Diabetes ; 73(6): 983-992, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498375

RESUMO

The postprandial glucose response is an independent risk factor for type 2 diabetes. Observationally, early glucose response after an oral glucose challenge has been linked to intestinal glucose absorption, largely influenced by the expression of sodium-glucose cotransporter 1 (SGLT1). This study uses Mendelian randomization (MR) to estimate the causal effect of intestinal SGLT1 expression on early glucose response. Involving 1,547 subjects with class II/III obesity from the Atlas Biologique de l'Obésité Sévère cohort, the study uses SGLT1 genotyping, oral glucose tolerance tests, and jejunal biopsies to measure SGLT1 expression. A loss-of-function SGLT1 haplotype serves as the instrumental variable, with intestinal SGLT1 expression as the exposure and the change in 30-min postload glycemia from fasting glycemia (Δ30 glucose) as the outcome. Results show that 12.8% of the 1,342 genotyped patients carried the SGLT1 loss-of-function haplotype, associated with a mean Δ30 glucose reduction of -0.41 mmol/L and a significant decrease in intestinal SGLT1 expression. The observational study links a 1-SD decrease in SGLT1 expression to a Δ30 glucose reduction of -0.097 mmol/L. MR analysis parallels these findings, associating a statistically significant reduction in genetically instrumented intestinal SGLT1 expression with a Δ30 glucose decrease of -0.353. In conclusion, the MR analysis provides genetic evidence that reducing intestinal SGLT1 expression causally lowers early postload glucose response. This finding has a potential translational impact on managing early glucose response to prevent or treat type 2 diabetes.


Assuntos
Glicemia , Absorção Intestinal , Análise da Randomização Mendeliana , Período Pós-Prandial , Transportador 1 de Glucose-Sódio , Humanos , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Período Pós-Prandial/fisiologia , Glicemia/metabolismo , Absorção Intestinal/genética , Masculino , Feminino , Teste de Tolerância a Glucose , Glucose/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Haplótipos , Adulto , Obesidade/genética , Obesidade/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Jejuno/metabolismo
15.
J Biol Chem ; 287(26): 21904-13, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22511784

RESUMO

Obesity is associated with a significantly increased risk for cancer suggesting that adipose tissue dysfunctions might play a crucial role therein. Macrophages play important roles in adipose tissue as well as in cancers. Here, we studied whether human adipose tissue macrophages (ATM) modulate cancer cell function. Therefore, ATM were isolated and compared with monocyte-derived macrophages (MDM) from the same obese patients. ATM, but not MDM, were found to secrete factors inducing inflammation and lipid accumulation in human T47D and HT-29 cancer cells. Gene expression profile comparison of ATM and MDM revealed overexpression of functional clusters, such as cytokine-cytokine receptor interaction (especially CXC-chemokine) signaling as well as cancer-related pathways, in ATM. Comparison with gene expression profiles of human tumor-associated macrophages showed that ATM, but not MDM resemble tumor-associated macrophages. Indirect co-culture experiments demonstrated that factors secreted by preadipocytes, but not mature adipocytes, confer an ATM-like phenotype to MDM. Finally, the concentrations of ATM-secreted factors related to cancer are elevated in serum of obese subjects. In conclusion, ATM may thus modulate the cancer cell phenotype.


Assuntos
Adipócitos/citologia , Tecido Adiposo/metabolismo , Regulação Neoplásica da Expressão Gênica , Macrófagos/citologia , Neoplasias/metabolismo , Compostos Azo/farmacologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Progressão da Doença , Humanos , Imuno-Histoquímica/métodos , Inflamação , Macrófagos/metabolismo , Obesidade/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
16.
Circ Res ; 108(8): 985-95, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21350215

RESUMO

RATIONALE: A crucial step in atherogenesis is the infiltration of the subendothelial space of large arteries by monocytes where they differentiate into macrophages and transform into lipid-loaded foam cells. Macrophages are heterogeneous cells that adapt their response to environmental cytokines. Th1 cytokines promote monocyte differentiation into M1 macrophages, whereas Th2 cytokines trigger an "alternative" M2 phenotype. OBJECTIVE: We previously reported the presence of CD68(+) mannose receptor (MR)(+) M2 macrophages in human atherosclerotic plaques. However, the function of these plaque CD68(+)MR(+) macrophages is still unknown. METHODS AND RESULTS: Histological analysis revealed that CD68(+)MR(+) macrophages locate far from the lipid core of the plaque and contain smaller lipid droplets compared to CD68(+)MR(-) macrophages. Interleukin (IL)-4-polarized CD68(+)MR(+) macrophages display a reduced capacity to handle and efflux cellular cholesterol because of low expression levels of the nuclear receptor liver x receptor (LXR)α and its target genes, ABCA1 and apolipoprotein E, attributable to the high 15-lipoxygenase activity in CD68(+)MR(+) macrophages. By contrast, CD68(+)MR(+) macrophages highly express opsonins and receptors involved in phagocytosis, resulting in high phagocytic activity. In M2 macrophages, peroxisome proliferator-activated receptor (PPAR)γ activation enhances the phagocytic but not the cholesterol trafficking pathways. CONCLUSIONS: These data identify a distinct macrophage subpopulation with a low susceptibility to become foam cells but high phagocytic activity resulting from different regulatory activities of the PPARγ-LXRα pathways.


Assuntos
Colesterol/metabolismo , Macrófagos/metabolismo , Receptores Nucleares Órfãos/metabolismo , PPAR gama/metabolismo , Fagocitose/fisiologia , Placa Aterosclerótica/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Predisposição Genética para Doença , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Receptores X do Fígado , Macrófagos/patologia , Receptores Nucleares Órfãos/fisiologia , Placa Aterosclerótica/patologia
17.
Arterioscler Thromb Vasc Biol ; 32(3): 677-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22207732

RESUMO

OBJECTIVE: 11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) catalyzes the intracellular reduction of inactive cortisone to active cortisol, the natural ligand activating the glucocorticoid receptor (GR). Peroxisome proliferator- activated receptor-γ (PPARγ) is a nuclear receptor controlling inflammation, lipid metabolism, and the macrophage polarization state. In this study, we investigated the impact of macrophage polarization on the expression and activity of 11ß-HSD1 and the role of PPARγ therein. METHODS AND RESULTS: 11ß-HSD1 gene expression is higher in proinflammatory M1 and anti-inflammatory M2 macrophages than in resting macrophages, whereas its activity is highest in M2 macrophages. Interestingly, PPARγ activation induces 11ß-HSD1 enzyme activity in M2 macrophages but not in resting macrophages or M1 macrophages. Consequently, human M2 macrophages displayed enhanced responsiveness to the 11ß-HSD1 substrate cortisone, an effect amplified by PPARγ induction of 11ß-HSD1 activity, as illustrated by an increased expression of GR target genes. CONCLUSION: Our data identify a positive cross-talk between PPARγ and GR in human M2 macrophages via the induction of 11ß-HSD1 expression and activity.


Assuntos
Inflamação/enzimologia , Macrófagos/efeitos dos fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Células Cultivadas , Cortisona/metabolismo , Indução Enzimática , Genes Reporter , Humanos , Hidrocortisona/metabolismo , Inflamação/genética , Inflamação/imunologia , Interleucina-4/metabolismo , Macrófagos/enzimologia , Macrófagos/imunologia , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , Receptores de Glucocorticoides/metabolismo , Rosiglitazona , Fatores de Tempo , Transfecção
18.
Mol Metab ; 69: 101686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746333

RESUMO

OBJECTIVE: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function. METHODS: We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR-/-) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR-/-) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR-/- mice. RESULTS: eWAT from HFD-fed whole-body FXR-/- and Ad-FXR-/- mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR-/- mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR-/- mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter. CONCLUSIONS: These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.


Assuntos
Resistência à Insulina , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Glucose/metabolismo , Homeostase , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Estresse Oxidativo , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
Cell Metab ; 6(2): 137-43, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17681149

RESUMO

Th1 cytokines promote monocyte differentiation into proatherogenic M1 macrophages, while Th2 cytokines lead to an "alternative" anti-inflammatory M2 macrophage phenotype. Here we show that in human atherosclerotic lesions, the expression of M2 markers and PPARgamma, a nuclear receptor controlling macrophage inflammation, correlate positively. Moreover, PPARgamma activation primes primary human monocytes into M2 differentiation, resulting in a more pronounced anti-inflammatory activity in M1 macrophages. However, PPARgamma activation does not influence M2 marker expression in resting or M1 macrophages, nor does PPARgamma agonist treatment influence the expression of M2 markers in atherosclerotic lesions, indicating that only native monocytes can be primed by PPARgamma activation to an enhanced M2 phenotype. Furthermore, PPARgamma activation significantly increases expression of the M2 marker MR in circulating peripheral blood mononuclear cells. These data demonstrate that PPARgamma activation skews human monocytes toward an anti-inflammatory M2 phenotype.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , PPAR gama/metabolismo , Benzofenonas/farmacologia , Biomarcadores , Células Sanguíneas/efeitos dos fármacos , Doenças das Artérias Carótidas/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Espumosas/efeitos dos fármacos , Células Espumosas/patologia , Humanos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , PPAR gama/agonistas , Comunicação Parácrina/efeitos dos fármacos , Fenótipo , Células-Tronco/efeitos dos fármacos , Tirosina/análogos & derivados , Tirosina/farmacologia
20.
Front Mol Neurosci ; 15: 1077381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590913

RESUMO

Fingolimod is an oral immunomodulatory drug used in the treatment of multiple sclerosis (MS) that may change lipid metabolism. Peroxisome proliferator-activated receptors (PPAR) are transcription factors that regulate lipoprotein metabolism and immune functions and have been implicated in the pathophysiology of MS. CD36 is a scavenger receptor whose transcription is PPAR regulated. The objective of this study was to evaluate whether fingolimod treatment modifies PPAR and CD36 gene expression as part of its action mechanisms. Serum lipoprotein profiles and PPAR and CD36 gene expression levels in peripheral leukocytes were analysed in 17 female MS patients before and at 6 and 12 months after fingolimod treatment initiation. Clinical data during the follow-up period of treatment were obtained. We found that fingolimod treatment increased HDL-Cholesterol and Apolipoprotein E levels and leukocyte PPARγ and CD36 gene expression. No correlations were found between lipid levels and variations in PPARγ and CD36 gene expression. PPARγ and CD36 variations were significantly correlated during therapy and in patients free of relapse and stable disease. Our results suggest that PPARγ and CD36-mediated processes may contribute to the mechanisms of action of fingolimod in MS. Further studies are required to explore the relation of the PPARγ/CD36 pathway to the clinical efficacy of the drug and its involvement in the pathogenesis of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA