Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Small ; 18(9): e2105832, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914866

RESUMO

Recently, lipid nanoparticles (LNPs) have attracted attention due to their emergent use for COVID-19 mRNA vaccines. The success of LNPs can be attributed to ionizable lipids, which enable functional intracellular delivery. Previously, the authors established an automated high-throughput platform to screen ionizable lipids and identified that the LNPs generated using this automated technique show comparable or increased mRNA functional delivery in vitro as compared to LNPs prepared using traditional microfluidics techniques. In this study, the authors choose one benchmark lipid, DLin-MC3-DMA (MC3), and investigate whether the automated formulation technique can enhance mRNA functional delivery in vivo. Interestingly, a 4.5-fold improvement in mRNA functional delivery in vivo by automated LNPs as compared to LNPs formulated by conventional microfluidics techniques, is observed. Mechanistic studies reveal that particles with large size accommodate more mRNA per LNP, possess more hydrophobic surface, are more hemolytic, bind a larger protein corona, and tend to accumulate more in macropinocytosomes, which may quantitatively benefit mRNA cytosolic delivery. These data suggest that mRNA loading per particle is a critical factor that accounts for the enhanced mRNA functional delivery of automated LNPs. These mechanistic findings provide valuable insight underlying the enhanced mRNA functional delivery to accelerate future mRNA LNP product development.


Assuntos
COVID-19 , Nanopartículas , Humanos , Lipossomos , Nanopartículas/química , RNA Mensageiro/química , SARS-CoV-2
2.
Mol Ther ; 27(11): 1950-1962, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31427168

RESUMO

Lipid nanoparticles have great potential for delivering nucleic-acid-based therapeutics, but low efficiency limits their broad clinical translation. Differences in transfection capacity between in vitro models used for nanoparticle pre-clinical testing are poorly understood. To address this, using a clinically relevant lipid nanoparticle (LNP) delivering mRNA, we highlight specific endosomal characteristics in in vitro tumor models that impact protein expression. A 30-cell line LNP-mRNA transfection screen identified three cell lines having low, medium, and high transfection that correlated with protein expression when they were analyzed in tumor models. Endocytic profiling of these cell lines identified major differences in endolysosomal morphology, localization, endocytic uptake, trafficking, recycling, and endolysosomal pH, identified using a novel pH probe. High-transfecting cells showed rapid LNP uptake and trafficking through an organized endocytic pathway to lysosomes or rapid exocytosis. Low-transfecting cells demonstrated slower endosomal LNP trafficking to lysosomes and defective endocytic organization and acidification. Our data establish that efficient LNP-mRNA transfection relies on an early and narrow endosomal escape window prior to lysosomal sequestration and/or exocytosis. Endocytic profiling should form an important pre-clinical evaluation step for nucleic acid delivery systems to inform model selection and guide delivery-system design for improved clinical translation.


Assuntos
Expressão Gênica , Lipídeos/química , Nanopartículas , RNA Mensageiro/genética , Transfecção , Linhagem Celular Tumoral , Endocitose , Endossomos/metabolismo , Citometria de Fluxo , Imunofluorescência , Genes Reporter , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Nanopartículas/química , RNA Mensageiro/administração & dosagem , Transfecção/métodos
3.
Pharmaceutics ; 14(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057063

RESUMO

With the launch of the UK Academy of Pharmaceutical Sciences Advanced Therapy Medicinal Products Focus Group in late 2020, a webinar series reviewing the current and emerging trends in cell and gene therapy was held virtually in May 2021. This webinar series was timely given the recent withdrawal of the United Kingdom from the European Union and the global COVID-19 pandemic impacting all sectors of the pharmaceutical sciences research landscape globally and in the UK. Delegates from the academic, industry, regulatory and NHS sectors attended the session where challenges and opportunities in the development and clinical implementation of cell and gene therapies were discussed. Globally, the cell and gene therapy market has reached a value of 4.3 billion dollars in 2020, having increased at a compound annual growth rate of 25.5% since 2015. This webinar series captured all the major developments in this rapidly evolving area and highlighted emerging concepts warranting cross-sector efforts from across the community in the future.

4.
Nanoscale ; 14(4): 1480-1491, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35024714

RESUMO

mRNA lipid nanoparticles (LNPs) are at the forefront of nucleic acid intracellular delivery, as exemplified by the recent emergency approval of two mRNA LNP-based COVID-19 vaccines. The success of an LNP product largely depends on the systematic optimisation of the four lipidic components, namely the ionisable lipid, PEG lipid, structural and helper lipids. However, the in vitro screening of novel lipidic components and LNP compositions is limited by the low-throughput of LNP preparation. To address these issues, we herein present an automated high-throughput screening platform to select novel ionisable lipids and corresponding LNPs encapsulating mRNA in vitro. This high-throughput platform employs a lab-based automated liquid handling system, amenable to high-throughput (up to 384 formulations per plate and several plates per run) and allows precise mixing and reproducible mRNA LNP preparation which ensures a direct head-to-head comparison of hundreds and even thousands of novel LNPs. Most importantly, the robotic process has been successfully applied to the screening of novel LNPs encapsulating mRNA and has identified the same novel mRNA LNP leads as those from microfluidics-mixing technology, with a correlation coefficient of 0.8751. This high-throughput platform can facilitate to narrow down the number of novel ionisable lipids to be evaluated in vivo. Moreover, this platform has been integrated into a fully-automated workflow for LNP property control, physicochemical characterisation and biological evaluation. The high-throughput platform may accelerate proprietary lipid development, mRNA LNP lead optimisation and candidate selection to advance preclinical mRNA LNP development to meet urgent global needs.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19 , Nanopartículas , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA/administração & dosagem , COVID-19/prevenção & controle , Humanos , Lipossomos , RNA Interferente Pequeno
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1765): 20180156, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30967005

RESUMO

Nucleic acids are a rapidly emerging therapeutic modality with the potential to become the third major drug modality alongside antibodies and small molecules. Owing to the unfavourable physico-chemical characteristics of nucleic acids, such as large size and negative charge, intracellular delivery remains a fundamental challenge to realizing this potential. Delivery technologies such as lipids, polymers and peptides have been used to facilitate delivery, with many of the most successful technologies using macropinocytosis to gain cellular entry; mostly by default rather than design. Fundamental knowledge of macropinocytosis is rapidly growing, presenting opportunities to better tailor design strategies to target this pathway. Furthermore, certain types of tumour cells have been observed to have high levels of macropinocytic activity and traffic cargo to favourable destinations within the cell for endosomal release, providing unique opportunities to further use this entry route for drug delivery. In this article, we review the delivery systems reported to be taken up by macropinocytosis and what is known about the mechanisms for regulating macropinocytosis in tumour cells. From this analysis, we identify new opportunities for exploiting this pathway for the intracellular delivery of nucleic acids to tumour cells. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ácidos Nucleicos/uso terapêutico , Pinocitose/fisiologia , Células Tumorais Cultivadas
6.
Front Physiol ; 4: 401, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24474936

RESUMO

Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore, nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer) and a pH-insensitive reference fluorophore (internal standard) immobilized in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesized using standard laboratory equipment and are detectable by non-invasive widely accessible imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular, special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: (1) synthesis and characterization of polyacrylamide and silica based nanosensors, (2) nanosensor calibration and (3) performing measurements using fluorescence microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA