Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 288(9): 6212-26, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255608

RESUMO

We have recently demonstrated that asymmetric dimethylarginine (ADMA) induces the translocation of endothelial nitric-oxide synthase (eNOS) to the mitochondrion via a mechanism that requires protein nitration. Thus, the goal of this study was elucidate how eNOS redistributes to mitochondria and to identify the nitrated protein responsible for this event. Our data indicate that exposure of pulmonary arterial endothelial cells to ADMA enhanced eNOS phosphorylation at the Akt1-dependent phosphorylation sites Ser(617) and Ser(1179). Mutation of these serine residues to alanine (S617A and S1179A) inhibited nitration-mediated eNOS translocation to the mitochondria, whereas the phosphormimic mutations (S617D and S1179D) exhibited increased mitochondrial redistribution in the absence of ADMA. The overexpression of a dominant-negative Akt1 also attenuated ADMA-mediated eNOS mitochondrial translocation. Furthermore, ADMA enhanced Akt1 nitration and increased its activity. Mass spectrometry identified a single nitration site in Akt1 located at the tyrosine residue (Tyr(350)) located within the client-binding domain. Replacement of Tyr(350) with phenylalanine abolished peroxynitrite-mediated eNOS translocation to mitochondria. We also found that in the absence of ADMA, eNOS translocation decreased mitochondrial oxygen consumption and superoxide production without altering cellular ATP level. This suggests that under physiologic conditions, eNOS translocation enhances mitochondria coupling. In conclusion, we have identified a new mechanism by which eNOS translocation to mitochondria is regulated by the phosphorylation of eNOS at Ser(617) and Ser(1179) by Akt1 and that this is enhanced when Akt1 becomes nitrated at Tyr(350).


Assuntos
Arginina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Arginina/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Humanos , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Óxido Nítrico Sintase Tipo III/genética , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ovinos
2.
Free Radic Biol Med ; 95: 96-111, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26928584

RESUMO

The development of pulmonary hypertension (PH) involves the uncontrolled proliferation of pulmonary smooth muscle cells via increased growth factor receptor signaling. However, the role of epidermal growth factor receptor (EGFR) signaling is controversial, as humans with advanced PH exhibit no changes in EGFR protein levels and purpose of the present study was to determine whether there are post-translational mechanisms that enhance EGFR signaling in PH. The EGFR inhibitor, gefinitib, significantly attenuated EGFR signaling and prevented the development of PH in monocrotaline (MCT)-exposed rats, confirming the contribution of EGFR activation in MCT induced PH. There was an early MCT-mediated increase in hydrogen peroxide, which correlated with the binding of the active metabolite of MCT, monocrotaline pyrrole, to catalase Cys377, disrupting its multimeric structure. This early oxidative stress was responsible for the oxidation of EGFR and the formation of sodium dodecyl sulfate (SDS) stable EGFR dimers through dityrosine cross-linking. These cross-linked dimers exhibited increased EGFR autophosphorylation and signaling. The activation of EGFR signaling did not correlate with pp60(src) dependent Y845 phosphorylation or EGFR ligand expression. Importantly, the analysis of patients with advanced PH revealed the same enhancement of EGFR autophosphorylation and covalent dimer formation in pulmonary arteries, while total EGFR protein levels were unchanged. As in the MCT exposed rat model, the activation of EGFR in human samples was independent of pp60(src) phosphorylation site and ligand expression. This study provides a novel molecular mechanism of oxidative stress stimulated covalent EGFR dimerization via tyrosine dimerization that contributes into development of PH.


Assuntos
Receptores ErbB/genética , Hipertensão Pulmonar/genética , Estresse Oxidativo/genética , Artéria Pulmonar/metabolismo , Animais , Receptores ErbB/metabolismo , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Monocrotalina/toxicidade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Oxirredução , Fosforilação , Multimerização Proteica/genética , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Ratos , Transdução de Sinais/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA