Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 136: 108638, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36842638

RESUMO

Fish erythrocytes remain nucleated, unlike mammalian erythrocytes that undergo enucleation during maturation. Besides oxygen transport, fish erythrocytes are capable of several immune defence processes and thus these cells are candidates for carrying out ETotic responses. ETosis is an evolutionarily conserved innate immune defence process found in both vertebrates and invertebrates, which involves the extrusion of DNA studded with antimicrobial effector proteins into the extracellular space that traps and kills microorganisms. In this present report, we demonstrate that erythrocytes from Danio rerio (zebrafish) produce ETotic-like responses when exposed to both chemical and physiological inducers of ETosis. Furthermore, erythrocytes from Salmo salar (Atlantic salmon) behaved in a similar way. We have termed these ET-like formations, as Fish Erythrocyte Extracellular Traps (FEETs). Several inducers of mammalian ETosis, such as the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin, induced FEETs. Moreover, we found that FEETs depend on the activation of PKC and generation of mitochondrial reactive oxygen species (mROS). This present report is the first demonstration that fish erythrocytes can exhibit ETotic-like responses, unveiling a previously unknown function, which sheds new light on the innate immune arsenal of these cells.


Assuntos
Armadilhas Extracelulares , Animais , Peixe-Zebra , Eritrócitos/metabolismo , Mamíferos
2.
J Fish Dis ; 45(11): 1781-1788, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36223485

RESUMO

Flavobacterium psychrophilum is the causative agent of bacterial cold-water disease (CWBD) and rainbow trout fry syndrome (RTFS), which affect salmonids. To better understand this pathogen and its interaction with the host during infection, including to support the development of resistant breeds and new vaccines and treatments, there is a pressing need for reliable and reproducible immersion challenge models that more closely mimic natural routes of infection. The aim of this present study was to evaluate a challenge model developed previously for rainbow trout for use in Atlantic salmon. First, preliminary challenges were conducted in Atlantic salmon (n = 120) and rainbow trout (n = 80) fry using two F. psychrophilum isolates collected from each fish species, respectively; fish had been pretreated with 200 mg/L hydrogen peroxide for 1 h. Thereafter, the main challenge was performed for just one F. psychrophilum isolate for each species (at 2 × 107 CFU/mL) but using larger cohorts (Atlantic salmon: n = 1187; rainbow trout: n = 2701). Survival in the main challenge was 81.2% in Atlantic salmon (21 days post-challenge) and 45.3% in rainbow trout (31 days post-challenge). Mortalities progressed similarly during the preliminary and main challenges for both species, demonstrating the reproducibility of this model. This is the first immersion challenge model of F. psychrophilum to be developed successfully for Atlantic salmon.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Salmo salar , Animais , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium , Peróxido de Hidrogênio , Imersão , Oncorhynchus mykiss/microbiologia , Reprodutibilidade dos Testes , Água
3.
PLoS Comput Biol ; 16(8): e1008037, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745111

RESUMO

Mass production and use of antibiotics has led to the rise of resistant bacteria, a problem possibly exacerbated by inappropriate and non-optimal application. Antibiotic treatment often follows fixed-dose regimens, with a standard dose of antibiotic administered equally spaced in time. But are such fixed-dose regimens optimal or can alternative regimens be designed to increase efficacy? Yet, few mathematical models have aimed to identify optimal treatments based on biological data of infections inside a living host. In addition, assumptions to make the mathematical models analytically tractable limit the search space of possible treatment regimens (e.g. to fixed-dose treatments). Here, we aimed to address these limitations by using experiments in a Galleria mellonella (insect) model of bacterial infection to create a fully parametrised mathematical model of a systemic Vibrio infection. We successfully validated this model with biological experiments, including treatments unseen by the mathematical model. Then, by applying artificial intelligence, this model was used to determine optimal antibiotic dosage regimens to treat the host to maximise survival while minimising total antibiotic used. As expected, host survival increased as total quantity of antibiotic applied during the course of treatment increased. However, many of the optimal regimens tended to follow a large initial 'loading' dose followed by doses of incremental reductions in antibiotic quantity (dose 'tapering'). Moreover, application of the entire antibiotic in a single dose at the start of treatment was never optimal, except when the total quantity of antibiotic was very low. Importantly, the range of optimal regimens identified was broad enough to allow the antibiotic prescriber to choose a regimen based on additional criteria or preferences. Our findings demonstrate the utility of an insect host to model antibiotic therapies in vivo and the approach lays a foundation for future regimen optimisation for patient and societal benefits.


Assuntos
Antibacterianos/uso terapêutico , Lepidópteros/microbiologia , Vibrioses/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos , Modelos Teóricos
4.
Fish Shellfish Immunol ; 119: 209-219, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34438058

RESUMO

Neutrophils release chromatin extracellular traps (ETs) as part of the fish innate immune response to counter the threats posed by microbial pathogens. However, relatively little attention has been paid to this phenomenon in many commercially farmed species, despite the importance of understanding host-pathogen interactions and the potential to influence ET release to reduce disease outbreaks. The aim of this present study was to investigate the release of ETs by Atlantic salmon (Salmo salar L.) immune cells. Extracellular structures resembling ETs of different morphology were observed by fluorescence microscopy in neutrophil suspensions in vitro, as these structures stained positively with Sytox Green and were digestible with DNase I. Immunofluorescence studies confirmed the ET structures to be decorated with histones H1 and H2A and neutrophil elastase, which are characteristic for ETs in mammals and other organisms. Although the ETs were released spontaneously, release in neutrophil suspensions was stimulated most significantly with 5 µg/ml calcium ionophore (CaI) for 1 h, whilst the fish pathogenic bacterium Aeromonas salmonicida (isolates 30411 and Hooke) also exerted a stimulatory effect. Microscopic observations revealed bacteria in association with ETs, and fewer bacterial colonies of A. salmonicida Hooke were recovered at 3 h after co-incubation with neutrophils that had been induced to release ETs. Interestingly, spontaneous release of ETs was inversely associated with fish mass (p < 0.05), a surrogate for age. Moreover, suspensions enriched for macrophages and stimulated with 5 µg/ml CaI released ET-like structures that occasionally led to the formation of large clumps of cells. A deeper understanding for the roles and functions of ETs within innate immunity of fish hosts, and their interaction with microbial pathogens, may open new avenues towards protecting cultured stocks against infectious diseases.


Assuntos
Aeromonas salmonicida , Armadilhas Extracelulares , Salmo salar , Animais , Cromatina , Neutrófilos , Suspensões
5.
Curr Microbiol ; 78(1): 114-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33230621

RESUMO

Ballan wrasse (Labrus bergylta, Ascanius 1767) are cleaner fish cultured in northern Europe to remove sea lice from farmed Atlantic salmon (Salmo salar, Linnaeus 1758). Despite increasing appreciation for the importance of the microbiota on the phenotypes of vertebrates including teleosts, the microbiota of wrasse eggs has yet to be described. Therefore, the aim of this present study was to describe the bacterial component of the microbiota of ballan wrasse eggs shortly after spawning and at 5 days, once the eggs had undergone a routine incubation protocol that included surface disinfection steps in a common holding tank. Triplicate egg samples were collected from each of three spawning tanks and analysis of 16S rRNA gene sequences revealed that 88.6% of reads could be identified to 186 taxonomic families. At Day 0, reads corresponding to members of the Vibrionaceae, Colwelliaceae and Rubritaleaceae families were detected at greatest relative abundances. Bacterial communities of eggs varied more greatly between tanks than between samples deriving from the same tank. At Day 5, there was a consistent reduction in 16S rRNA gene sequence richness across the tanks. Even though the eggs from the different tanks were incubated in a common holding tank, the bacterial communities of the eggs from the different tanks had diverged to become increasingly dissimilar. This suggests that the disinfection and incubation exerted differential effects of the microbiota of the eggs from each tank and that the influence of the tank water on the composition of the egg microbiota was lower than expected. This first comprehensive description of the ballan wrasse egg bacterial community is an initial step to understand the role and function of the microbiota on the phenotype of this fish. In future, mass DNA sequencing methods may be applied in hatcheries to screen for pathogens and as a tool to assess the health status of eggs.


Assuntos
Doenças dos Peixes , Perciformes , Vibrionaceae , Animais , Peixes , RNA Ribossômico 16S/genética
6.
Aquaculture ; 540: 736735, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34276104

RESUMO

Antibiotics are used in aquaculture to maintain the health and welfare of stocks; however, the emergence and selection of antibiotic resistance in bacteria poses threats to humans, animals and the environment. Mitigation of antibiotic resistance relies on understanding the flow of antibiotics, residues, resistant bacteria and resistance genes through interconnecting systems, so that potential solutions can be identified and issues around their implementation evaluated. Participatory systems-thinking can capture the deep complexity of a system while integrating stakeholder perspectives. In this present study, such an approach was applied to Nile tilapia (Oreochromis niloticus) production in the Nile Delta of Egypt, where disease events caused by antibiotic-resistant pathogens have been reported. A system map was co-produced with aquaculture stakeholders at a workshop in May 2018 and used to identify hotspots of antibiotic use, exposure and fate and to describe approaches that would promote fish health and thus reduce antibiotic use. Antibiotics are introduced into the aquaculture system via direct application for example in medicated feed, but residues may also be introduced into the system through agricultural drainage water, which is the primary source of water for most fish farms in Egypt. A follow-up survey of stakeholders assessed the perceived feasibility, advantages and disadvantages of potential interventions. Interventions that respondents felt could be implemented in the short-term to reduce antibiotic usage effectively included: more frequent water exchanges, regular monitoring of culture water quality parameters, improved storage conditions for feed, use of probiotics and greater access to farmer and service providers training programmes. Other potential interventions included greater access to suitable and rapid diagnostics, high quality feeds, improved biosecurity measures and genetically-improved fish, but these solutions were expected to be achieved as long-term goals, with cost being of one of the noted barriers to implementation. Identifying feasible and sustainable interventions that can be taken to reduce antibiotic use, and understanding implementation barriers, are important for addressing antibiotic resistance and ensuring the continued efficacy of antibiotics. This is vital to ensuring the productivity of the tilapia sector in Egypt. The approach taken in the present study provides a means to identify points in the system where the effectiveness of interventions can be evaluated and thus it may be applied to other food production systems to combat the problem of antibiotic resistance.

7.
BMC Microbiol ; 20(1): 8, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918661

RESUMO

BACKGROUND: Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. RESULTS: Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. CONCLUSIONS: This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.


Assuntos
Antibacterianos/farmacologia , Francisella/patogenicidade , Mariposas/microbiologia , Animais , Doenças dos Peixes/microbiologia , Francisella/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia , Viabilidade Microbiana , Mariposas/efeitos dos fármacos , Fagocitose , Tilápia/microbiologia
8.
Fish Shellfish Immunol ; 99: 227-238, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31988016

RESUMO

Neutrophils release nuclear chromatin decorated with antimicrobial proteins into the extracellular milieu as an innate immune defence mechanism to counter invading microbes. These chromatin structures, called extracellular traps (ETs) and released by a process called NETosis, have been detected in mammals, certain invertebrates and some fish species, including fathead minnow, zebrafish, common carp, turbot, sole and barramundi. However, there have been no previous studies of ETs in the Salmonidae. ETs are released in response to chemical and biological stimuli, but observations from different fish species are inconsistent, particularly regarding the potency of various inducers and inhibitors. Thus, this present study aimed to describe ET release in a salmonid (rainbow trout, Oncorhynchus mykiss (Walbaum, 1792)) and uncover the inducers and inhibitors that can control this response. Highly enriched suspensions of polymorphonuclear cells (PMNs; mainly neutrophils) were prepared from head kidney tissues by a triple-layer Percoll gradient technique. ET structures were visualised in PMN-enriched suspensions through staining of the chromatin with nucleic acid-specific dyes and immunocytochemical probing of characteristic proteins expected to decorate the structure. ET release was quantified after incubation with inducers and inhibitors known to affect this response in other organisms. Structures resembling ETs stained positively with SYTOX Green (a stain specific for nucleic acid) while immunocytochemistry was used to detect neutrophil elastase, myeloperoxidase and H2A histone in the structures, which are diagnostic proteinaceous markers of ETs. Consistent with other studies on mammals and some fish species, calcium ionophore and flagellin were potent inducers of ETs, while cytochalasin D inhibited NETosis. Phorbol 12-myristate 13-acetate (PMA), used commonly to induce ETs, exerted only weak stimulatory activity, while heat-killed bacteria and lipopolysaccharide did not induce ET release. Unexpectedly, the ET-inhibitor diphenyleneiodonium chloride acted as an inducer of ET release, an observation not reported elsewhere. Taken together, these data confirm for the first time that ETs are released by salmonid PMNs and compounds useful for manipulating NETosis were identified, thus providing a platform for further studies to explore the role of this mechanism in fish immunity. This new knowledge provides a foundation for translation to farm settings, since manipulation of the innate immune response offers a potential alternative to the use of antibiotics to mitigate against microbial infections, particularly for pathogens where protection by vaccination has yet to be realised.


Assuntos
Cromatina , Armadilhas Extracelulares/fisiologia , Rim Cefálico/fisiologia , Imunidade Inata , Neutrófilos/fisiologia , Oncorhynchus mykiss/imunologia , Animais , Ionóforos de Cálcio , Flagelina , Vibrio , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/veterinária
9.
J Fish Dis ; 43(11): 1373-1379, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32856330

RESUMO

Atypical Aeromonas salmonicida causes furunculosis infections of non-salmonid fish, which requires antibiotic therapy. However, antibiotics may induce biofilm in some bacteria, which protects them against hostile conditions while allowing them to persist on surfaces, thus forming a reservoir for infection. The aim of this study was to determine whether atypical isolates of A. salmonicida increased biofilm in the presence of two antibiotics, florfenicol and oxytetracycline. A microtitre plate assay was used to quantify biofilm in the presence and absence of each antibiotic. Fifteen of 28 isolates formed biofilms under control conditions, while 23 of 28 isolates increased biofilm formation in the presence of at least one concentration of at least one antibiotic. For oxytetracycline, the most effective concentration causing biofilm to increase was one-quarter of that preventing visible bacterial growth, whereas for florfenicol it was one-half of this value. This is the first study to demonstrate that a bacterial pathogen of fish increases biofilm in response to antibiotics. Biofilm formation may increase the risk of re-infection in culture systems and this lifestyle favours the transmission of genetic material, which has implications for the dissemination of antibiotic-resistance genes and demonstrates the need for enhanced disease prevention measures against atypical A. salmonicida.


Assuntos
Aeromonas salmonicida/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Aeromonas salmonicida/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Oxitetraciclina/farmacologia , Tianfenicol/análogos & derivados , Tianfenicol/farmacologia
11.
Mar Drugs ; 15(11)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104213

RESUMO

Polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA; C20:5n-3), are attracting interest as possible new topical antibacterial agents, particularly due to their potency and perceived safety. However, relatively little is known of the underlying mechanism of antibacterial action of EPA or whether bacteria can develop resistance quickly against this or similar compounds. Therefore, the aim of this present study was to determine the mechanism of antibacterial action of EPA and investigate whether bacteria could develop reduced susceptibility to this fatty acid upon repeated exposure. Against two common Gram-positive human pathogens, Bacillus cereus and Staphylococcus aureus, EPA inhibited bacterial growth with a minimum inhibitory concentration of 64 mg/L, while minimum bactericidal concentrations were 64 mg/L and 128 mg/L for B. cereus and S. aureus, respectively. Both species were killed completely in EPA at 128 mg/L within 15 min at 37 °C, while reduced bacterial viability was associated with increased release of 260-nm-absorbing material from the bacterial cells. Taken together, these observations suggest that EPA likely kills B. cereus and S. aureus by disrupting the cell membrane, ultimately leading to cell lysis. Serial passage of the strains in the presence of sub-inhibitory concentrations of EPA did not lead to the emergence or selection of strains with reduced susceptibility to EPA during 13 passages. This present study provides data that may support the development of EPA and other fatty acids as antibacterial agents for cosmetic and pharmaceutical applications.


Assuntos
Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Óleos de Peixe/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Resistência Microbiana a Medicamentos , Peixes , Testes de Sensibilidade Microbiana
12.
BMC Microbiol ; 15: 127, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099243

RESUMO

BACKGROUND: Microbial diseases cause considerable economic losses in aquaculture and new infection control measures often rely on a better understanding of pathogenicity. However, disease studies performed in fish hosts often require specialist infrastructure (e.g., aquaria), adherence to strict legislation and do not permit high-throughput approaches; these reasons justify the development of alternative hosts. This study aimed to validate the use of larvae of the greater wax moth (Galleria mellonella) to investigate virulence of the important fish pathogen, Vibrio anguillarum. RESULTS: Using 11 wild-type isolates of V. anguillarum, these bacteria killed larvae in a dose-dependent manner and replicated inside the haemolymph, but infected larvae were rescued by antibiotic therapy. Crucially, virulence correlated significantly and positively in larva and Atlantic salmon (Salmo salar) infection models. Challenge studies with mutants knocked out for single virulence determinants confirmed conserved roles in larva and fish infections in some cases (pJM1 plasmid, rtxA), but not all (empA, flaA, flaE). CONCLUSIONS: The G. mellonella model is simple, more ethically acceptable than experiments on vertebrates and, crucially, does not necessitate liquid systems, which reduces infrastructure requirements and biohazard risks associated with contaminated water. The G. mellonella model may aid our understanding of microbial pathogens in aquaculture and lead to the timely introduction of new effective remedies for infectious diseases, while adhering to the principles of replacement, reduction and refinement (3Rs) and considerably reducing the number of vertebrates used in such studies.


Assuntos
Doenças dos Peixes/microbiologia , Mariposas/microbiologia , Mariposas/fisiologia , Vibrioses/veterinária , Vibrio/patogenicidade , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Larva/efeitos dos fármacos , Larva/microbiologia , Mariposas/efeitos dos fármacos , Mutação , Salmo salar/microbiologia , Vibrio/classificação , Vibrio/genética , Vibrio/isolamento & purificação , Vibrioses/microbiologia , Virulência/efeitos dos fármacos , Fatores de Virulência/genética
13.
Pathogens ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921763

RESUMO

Aeromonas dhakensis is increasingly recognised to be an important pathogen responsible for disease losses in warm-water aquaculture and, similar to several other Aeromonas species, it can infect humans. Knowledge of A. dhakensis is accumulating, but this species remains relatively under-investigated compared to its close relative, Aeromonas hydrophila. The significance of A. dhakensis may have been overlooked in disease events of aquatic animals due to issues with reliable identification. Critical to appreciating the importance of this pathogen is the application of dependable molecular tools that enable accurate identification and discrimination from A. hydrophila and other motile aeromonads. This review aims to synthesise the key literature on A. dhakensis, particularly with relevance to aquaculture, including knowledge of the bacterium derived from disease case studies in aquatic hosts. Identification methods and strain phylogeny are discussed, with accurate detection important for prompt diagnosis and for distinguishing strains with heightened virulence. Increasing evidence suggests that A. dhakensis may be more virulent than A. hydrophila and correct identification is required to determine the zoonotic risks posed, which includes concerns for antibiotic-resistant strains. This review provides an impetus to improve species identification in the future and screen strain collections of presumptive Aeromonas spp. retrospectively to reveal the true prevalence and impact of A. dhakensis in aquaculture, the environment, and healthcare settings.

14.
J Antimicrob Chemother ; 68(11): 2569-75, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23800902

RESUMO

OBJECTIVES: To evaluate the in vivo effectiveness of a combination treatment containing ranalexin (a natural antimicrobial peptide) and lysostaphin (an antistaphylococcal endopeptidase) for reducing nasal burden of methicillin-resistant Staphylococcus aureus (MRSA). METHODS: The community-acquired MRSA strain S. aureus NRS384 (USA300-0114) was used in the present study because it is commonly isolated from human nares and it established consistent and reproducible colonization of cotton rat nares. This model was used to evaluate the efficacy of ranalexin/lysostaphin gels (0.1%-1% w/v; administered intranasally once or once per day for 3 consecutive days) for reducing nasal MRSA burden. Control animals were administered vehicle gel only (0.5% hydroxypropyl methylcellulose) or 2% mupirocin, which is used clinically for nasal decolonization of MRSA. Nasal MRSA burden was assessed at 192 h post-inoculation, which was at least 72 h after the final treatment had been administered. An additional study assessed the efficacy of 0.1% ranalexin/lysostaphin against a mupirocin-resistant MRSA strain (MUP20), which had been selected by serial passage of S. aureus NRS384 through subinhibitory concentrations of mupirocin. RESULTS: Gels containing 0.1% ranalexin/lysostaphin consistently reduced median nasal burden of MRSA to an extent similar to or greater than 2% mupirocin. Treatment with 0.1% ranalexin/lysostaphin was also effective against the MUP20 strain. There was evidence for only minimal irritancy in cotton rat nares administered three doses of 0.1% ranalexin/lysostaphin, suggesting that this agent is suitable for short-course therapy such as is employed currently for nasal decolonization with mupirocin. CONCLUSIONS: Ranalexin/lysostaphin could serve as an alternative to mupirocin for nasal decolonization of MRSA.


Assuntos
Antibacterianos/administração & dosagem , Portador Sadio/tratamento farmacológico , Lisostafina/administração & dosagem , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nariz/microbiologia , Peptídeos Cíclicos/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Administração Tópica , Animais , Carga Bacteriana , Portador Sadio/microbiologia , Quimioterapia Combinada/métodos , Géis/administração & dosagem , Modelos Animais , Sigmodontinae , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento
15.
Mar Drugs ; 11(11): 4544-57, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24232668

RESUMO

New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32-1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15-30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically.


Assuntos
Antibacterianos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Pele/efeitos dos fármacos , Pele/microbiologia
16.
Adv Appl Microbiol ; 78: 25-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22305092

RESUMO

There is an urgent need for new antimicrobial agents to combat infections caused by drug-resistant pathogens. Once a compound is shown to be effective in vitro, it is necessary to evaluate its efficacy in an animal infection model. Typically, this is achieved using a mammalian model, but such experiments are costly, time consuming, and require full ethical consideration. Hence, cheaper and ethically more acceptable invertebrate models of infection have been introduced, including the larvae of the greater wax moth Galleria mellonella. Invertebrates have an immune system that is functionally similar to the innate immune system of mammals, and often identical virulence and pathogenicity factors are used by human pathogenic microbes to infect wax moth larvae and mammals. Moreover, the virulence of many human pathogens is comparable in wax moth larvae and mammals. Using key examples from the literature, this chapter highlights the benefits of using the wax moth larva model to provide a rapid, inexpensive, and reliable evaluation of the toxicity and efficacy of new antimicrobial agents in vivo and prior to the use of more expensive mammalian models. This simple insect model can bridge the gap between in vitro studies and mammalian experimentation by screening out compounds with a low likelihood of success, while providing greater justification for further studies in mammalian systems. Thus, broader implementation of the wax moth larva model into anti-infective drug discovery and development programs could reduce the use of mammals during preclinical assessments and the overall cost of drug development.


Assuntos
Larva , Mariposas , Animais , Anti-Infecciosos , Humanos , Virulência , Fatores de Virulência
17.
Front Microbiol ; 13: 1067235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36794008

RESUMO

Introduction: Aeromonads are ubiquitous in aquatic environments and several species are opportunistic pathogens of fish. Disease losses caused by motile Aeromonas species, particularly Aeromonas hydrophila, can be challenging in intensive aquaculture, such as at striped catfish (Pangasianodon hypophthalmus) farms in Vietnam. Outbreaks require antibiotic treatments, but their application is undesirable due to risks posed by resistance. Vaccines are an attractive prophylactic and they must protect against the prevalent strains responsible for ongoing outbreaks. Methods: This present study aimed to characterize A. hydrophila strains associated with mortalities in striped catfish culture in the Mekong Delta by a polyphasic genotyping approach, with a view to developing more effective vaccines. Results: During 2013-2019, 345 presumptive Aeromonas spp. isolates were collected at farms in eight provinces. Repetitive element sequence-based PCR, multi-locus sequence typing and whole-genome sequencing revealed most of the suspected 202 A. hydrophila isolates to belong to ST656 (n = 151), which corresponds to the closely-related species Aeromonas dhakensis, with a lesser proportion belonging to ST251 (n = 51), a hypervirulent lineage (vAh) of A. hydrophila already causing concern in global aquaculture. The A. dhakensis ST656 and vAh ST251 isolates from outbreaks possessed unique gene sets compared to published A. dhakensis and vAh ST251 genomes, including antibiotic-resistance genes. The sharing of resistance determinants to sulphonamides (sul1) and trimethoprim (dfrA1) suggests similar selection pressures acting on A. dhakensis ST656 and vAh ST251 lineages. The earliest isolate (a vAh ST251 from 2013) lacked most resistance genes, suggesting relatively recent acquisition and selection, and this underscores the need to reduce antibiotics use where possible to prolong their effectiveness. A novel PCR assay was designed and validated to distinguish A. dhakensis and vAh ST251 strains. Discussion: This present study highlights for the first time A. dhakensis, a zoonotic species that can cause fatal human infection, to be an emerging pathogen in aquaculture in Vietnam, with widespread distribution in recent outbreaks of motile Aeromonas septicaemia in striped catfish. It also confirms vAh ST251 to have been present in the Mekong Delta since at least 2013. Appropriate isolates of A. dhakensis and vAh should be included in vaccines to prevent outbreaks and reduce the threat posed by antibiotic resistance.

18.
PLoS One ; 17(2): e0263914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192666

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a global crisis that evolves from a complex system of factors. Understanding what factors interact is key to finding solutions. Our objective was to identify the factors influencing AMR in the European food system and places to intervene. MATERIALS AND METHODS: We conducted two workshops involving participants with diverse perspectives to identify the factors influencing AMR and leverage points (places) to target interventions. Transcripts were open coded for factors and connections, then transcribed into Vensim 8.0.4 to develop a causal loop diagram (CLD) and compute the number of feedback loops. Thematic analysis followed to describe AMR dynamics in Europe's food system and places for intervention. The CLD and themes were confirmed via participant feedback. RESULTS: Seventeen participants representing human, animal and agricultural sectors identified 91 CLD factors and 331 connections. Seven themes (e.g., social and economic conditions) describing AMR dynamics in Europe's food system, five 'overarching factors' that impact the entire CLD system (e.g., leadership) and fourteen places for intervention (e.g., consumer demand) emerged from workshop discussions. Most leverage points fell on highly networked feedback loops suggesting that intervening at these places may create unpredictable consequences. CONCLUSIONS: Our study produced a CLD of factors influencing AMR in Europe's food system that implicates sectors across the One Health spectrum. The high connectivity between the CLD factors described by participants and our finding that factors are connected with many feedback mechanisms underscores the complexity of the AMR problem and the challenge with finding long-term solutions. Identifying factors and feedbacks helped identify relevant leverage points in the system. Some actions, such as government's setting AMU standards may be easier to implement. These actions in turn can support multi-pronged actions that can help redefine the vision, values and goals of the system to sustainably tackle AMR.


Assuntos
Resistência Microbiana a Medicamentos , Qualidade dos Alimentos , Controle de Qualidade , Pesquisa Participativa Baseada na Comunidade/normas , Europa (Continente) , Humanos
19.
Front Public Health ; 10: 831097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874997

RESUMO

Background: Antimicrobial resistance (AMR) is a growing global crisis with long-term and unpredictable health, social and economic impacts, with which climate change is likely to interact. Understanding how to govern AMR amidst evolving climatic changes is critical. Scenario planning offers a suitable approach. By envisioning alternative futures, stakeholders more effectively can identify consequences, anticipate problems, and better determine how to intervene. This study explored future worlds and actions that may successfully address AMR in a changing climate in a high-income country, using Sweden as the case. Methods: We conducted online scenario-building workshops and interviews with eight experts who explored: (1) how promising interventions (taxation of antimicrobials at point of sale, and infection prevention measures) could each combat AMR in 2050 in Sweden given our changing climate; and (2) actions to take starting in 2030 to ensure success in 2050. Transcripts were thematically analyzed to produce a narrative of participant validated alternative futures. Results: Recognizing AMR to be a global problem requiring global solutions, participants looked beyond Sweden to construct three alternative futures: (1) "Tax Burn Out" revealed taxation of antimicrobials as a low-impact intervention that creates inequities and thus would fail to address AMR without other interventions, such as infection prevention measures. (2) "Addressing the Basics" identified infection prevention measures as highly impactful at containing AMR in 2050 because they would contribute to achieving the Sustainable Development Goals (SDGs), which would be essential to tackling inequities underpinning AMR and climate change, and help to stabilize climate-induced mass migration and conflicts; and (3) "Siloed Nations" described a movement toward nationalism and protectionism that would derail the "Addressing the Basics" scenario, threatening health and wellbeing of all. Several urgent actions were identified to combat AMR long-term regardless which future un-folds, such as global collaboration, and a holistic approach where AMR and climate change are addressed as interlinked issues. Conclusion: Our participatory scenario planning approach enabled participants from different sectors to create shared future visions and identify urgent actions to take that hinge on global collaboration, addressing AMR and climate change together, and achieving the SDGs to combat AMR under a changing climate.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Mudança Climática , Humanos , Desenvolvimento Sustentável , Suécia
20.
J Antimicrob Chemother ; 66(8): 1785-90, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622972

RESUMO

OBJECTIVES: To investigate whether the wax moth larva, Galleria mellonella, is a suitable host for assessing the in vivo efficacy of antistaphylococcal agents against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) infections. METHODS: Wax moth larvae were infected with increasing doses of S. aureus to investigate the effect of inoculum size on larval survival. In addition, infected wax moth larvae were treated with daptomycin, penicillin or vancomycin to examine whether these agents were effective against S. aureus and MRSA infections in vivo. RESULTS: Increasing inoculum doses of live S. aureus cells resulted in greater larval mortality, but heat-killed bacteria and cell-free culture filtrates had no detrimental effects on survival. Larval mortality rate also depended on the post-inoculation incubation temperature. After larvae were infected with S. aureus, larval survival was enhanced by administering the antistaphylococcal antibiotics daptomycin or vancomycin. Larval survival increased with increasing doses of the antibiotics. Moreover, penicillin improved survival of larvae infected with a penicillin-susceptible methicillin-susceptible S. aureus (MSSA) strain, but it was ineffective at similar doses in larvae infected with MRSA (penicillin resistant). Daptomycin and vancomycin were also effective when administered to the larvae prior to infection with bacteria. CONCLUSIONS: This is the first report to demonstrate that antibiotics are effective in the wax moth larva model for the treatment of infections caused by Gram-positive bacteria. The new wax moth larva model is a useful preliminary model for assessing the in vivo efficacy of candidate antistaphylococcal agents before proceeding to mammalian studies, which may reduce animal experimentation and expense.


Assuntos
Antibacterianos/administração & dosagem , Mariposas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Larva/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA