Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652110

RESUMO

Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.


Assuntos
Biomarcadores , Proteômica , Humanos , Biomarcadores/sangue , Proteômica/métodos , Feminino , Masculino , Adulto , Doenças Neuromusculares/sangue , Doenças Neuromusculares/genética , Doenças Neuromusculares/metabolismo , Pessoa de Meia-Idade , Proteoma/metabolismo , Leucócitos/metabolismo
2.
Hum Mol Genet ; 31(14): 2386-2395, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35179199

RESUMO

Clonal hematopoiesis because of somatic mutations in hematopoietic stem/progenitor cells is an age-related phenomenon and commonly observed when sequencing blood DNA in elderly individuals. Several genes that are implicated in clonal hematopoiesis are also associated with Mendelian disorders when mutated in the germline, potentially leading to variant misinterpretation. We performed a literature search to identify genes associated with age-related clonal hematopoiesis followed by an OMIM query to identify the subset of genes in which germline variants are associated with Mendelian disorders. We retrospectively screened for diagnostic cases in which the presence of age-related clonal hematopoiesis confounded exome sequencing data interpretation. We found 58 genes in which somatic mutations are implicated in clonal hematopoiesis, while germline variants in the same genes are associated with Mendelian (mostly neurodevelopmental) disorders. Using five selected cases of individuals with suspected monogenic disorders, we illustrate how clonal hematopoiesis in either variant databases or exome sequencing datasets poses a pitfall, potentially leading to variant misclassification and erroneous conclusions regarding gene-disease associations.


Assuntos
Hematopoiese Clonal , Hematopoese , Idoso , Células Germinativas , Hematopoese/genética , Humanos , Mutação , Estudos Retrospectivos
3.
Brain ; 146(5): 1831-1843, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36227727

RESUMO

Instability of simple DNA repeats has been known as a common cause of hereditary ataxias for over 20 years. Routine genetic diagnostics of these phenotypically similar diseases still rely on an iterative workflow for quantification of repeat units by PCR-based methods of limited precision. We established and validated clinical nanopore Cas9-targeted sequencing, an amplification-free method for simultaneous analysis of 10 repeat loci associated with clinically overlapping hereditary ataxias. The method combines target enrichment by CRISPR-Cas9, Oxford Nanopore long-read sequencing and a bioinformatics pipeline using the tools STRique and Megalodon for parallel detection of length, sequence, methylation and composition of the repeat loci. Clinical nanopore Cas9-targeted sequencing allowed for the precise and parallel analysis of 10 repeat loci associated with adult-onset ataxia and revealed additional parameter such as FMR1 promotor methylation and repeat sequence required for diagnosis at the same time. Using clinical nanopore Cas9-targeted sequencing we analysed 100 clinical samples of undiagnosed ataxia patients and identified causative repeat expansions in 28 patients. Parallel repeat analysis enabled a molecular diagnosis of ataxias independent of preconceptions on the basis of clinical presentation. Biallelic expansions within RFC1 were identified as the most frequent cause of ataxia. We characterized the RFC1 repeat composition of all patients and identified a novel repeat motif, AGGGG. Our results highlight the power of clinical nanopore Cas9-targeted sequencing as a readily expandable workflow for the in-depth analysis and diagnosis of phenotypically overlapping repeat expansion disorders.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Adulto , Humanos , Ataxia/genética , Ataxia Cerebelar/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Proteína do X Frágil da Deficiência Intelectual
4.
Brain ; 146(2): 668-677, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857854

RESUMO

5q-associated spinal muscular atrophy is a rare neuromuscular disorder with the leading symptom of a proximal muscle weakness. Three different drugs have been approved by the European Medicines Agency and Food and Drug Administration for the treatment of spinal muscular atrophy patients, however, long-term experience is still scarce. In contrast to clinical trial data with restricted patient populations and short observation periods, we report here real-world evidence on a broad spectrum of patients with early-onset spinal muscular atrophy treated with nusinersen focusing on effects regarding motor milestones, and respiratory and bulbar insufficiency during the first years of treatment. Within the SMArtCARE registry, all patients under treatment with nusinersen who never had the ability to sit independently before the start of treatment were identified for data analysis. The primary outcome of this analysis was the change in motor function evaluated with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders and motor milestones considering World Health Organization criteria. Further, we evaluated data on the need for ventilator support and tube feeding, and mortality. In total, 143 patients with early-onset spinal muscular atrophy were included in the data analysis with a follow-up period of up to 38 months. We observed major improvements in motor function evaluated with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders. Improvements were greater in children >2 years of age at start of treatment than in older children. 24.5% of children gained the ability to sit independently. Major improvements were observed during the first 14 months of treatment. The need for intermittent ventilator support and tube feeding increased despite treatment with nusinersen. Our findings confirm the increasing real-world evidence that treatment with nusinersen has a dramatic influence on disease progression and survival in patients with early-onset spinal muscular atrophy. Major improvements in motor function are seen in children younger than 2 years at the start of treatment. Bulbar and respiratory function needs to be closely monitored, as these functions do not improve equivalent to motor function.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Criança , Lactente , Humanos , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Injeções Espinhais
5.
Nervenarzt ; 2024 Apr 29.
Artigo em Alemão | MEDLINE | ID: mdl-38683354

RESUMO

BACKGROUND: Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES: The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS: This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS: The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS: The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.

6.
Am J Hum Genet ; 107(2): 364-373, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707086

RESUMO

We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.


Assuntos
Encefalopatias/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Criança , Feminino , Humanos , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto Jovem
7.
NMR Biomed ; 35(12): e4805, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35892264

RESUMO

The main pathologies in the muscles of patients with neuromuscular diseases (NMD) are fatty infiltration and edema. Recently, quantitative magnetic resonance (MR) imaging for determination of the MR biomarkers proton density fat fraction (PDFF) and water T2 (T2w ) has been advanced. Biophysical effects or pathology can have different effects on MR biomarkers. Thus, for heterogeneously affected muscles, the routinely performed mean or median value analyses of MR biomarkers are questionable. Our work presents a voxel-based histogram analysis of PDFF and T2w images to point out potential quantification errors. In 12 patients with NMD, chemical-shift encoding-based water-fat imaging for PDFF and T2 mapping with spectral adiabatic inversion recovery (SPAIR) for T2w determination was performed. Segmentation of nine thigh muscles was performed bilaterally (n = 216). PDFF and T2 maps were coregistered. A voxel-based comparison of PDFF and T2w showed a decreased T2w with increasing PDFF. Mean T2w and mean T2w without fatty voxels (PDFF < 10%) show good agreement, whereas standard deviation (σ) T2w and σ T2w without fatty voxels show increasing difference with increasing values of σ. Thereby two subgroups can be observed, referring to muscles in which the exclusion of fatty voxels has a negligible influence versus muscles in which a strong dependency of the T2w value distribution on the exclusion of fatty voxels is present. Because of the two opposite effects that influence T2w in a voxel, namely, (i) a pathophysiologically increased water mobility leading to T2w elevation, and (ii) a dependency of T2w on the PDFF leading to decreased T2w , the T2w distribution within a muscle might be heterogenous and the routine mean or median analysis can lead to a misinterpretation of the muscle health. It was concluded that muscle T2w mean values can wrongly suggest healthy muscle tissue. A deeper analysis of the underlying value distribution is necessary. Therefore, a quantitative analysis of T2w histograms is a potential alternative.


Assuntos
Doenças Neuromusculares , Água , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Neuromusculares/diagnóstico por imagem , Doenças Neuromusculares/patologia , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Prótons , Biomarcadores
8.
Mov Disord ; 37(10): 2147-2153, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047608

RESUMO

BACKGROUND: COQ4 codes for a mitochondrial protein required for coenzyme Q10 (CoQ10 ) biosynthesis. Autosomal recessive COQ4-associated CoQ10 deficiency leads to an early-onset mitochondrial multi-organ disorder. METHODS: In-house exome and genome datasets (n = 14,303) were screened for patients with bi-allelic variants in COQ4. Work-up included clinical characterization and functional studies in patient-derived cell lines. RESULTS: Six different COQ4 variants, three of them novel, were identified in six adult patients from four different families. Three patients had a phenotype of hereditary spastic paraparesis, two sisters showed a predominant cerebellar ataxia, and one patient had mild signs of both. Studies in patient-derived fibroblast lines revealed significantly reduced amounts of COQ4 protein, decreased CoQ10 concentrations, and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: We report bi-allelic variants in COQ4 causing an adult-onset ataxia-spasticity spectrum phenotype and a disease course much milder than previously reported. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Proteínas Mitocondriais , Ubiquinona , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Doenças Mitocondriais , Proteínas Mitocondriais/genética , Espasticidade Muscular , Debilidade Muscular , Mutação/genética , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismo
9.
Mov Disord ; 37(8): 1707-1718, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699229

RESUMO

BACKGROUND: Variants in genes of the nucleotide excision repair (NER) pathway have been associated with heterogeneous clinical presentations ranging from xeroderma pigmentosum to Cockayne syndrome and trichothiodystrophy. NER deficiencies manifest with photosensitivity and skin cancer, but also developmental delay and early-onset neurological degeneration. Adult-onset neurological features have been reported in only a few xeroderma pigmentosum cases, all showing at least mild skin manifestations. OBJECTIVE: The aim of this multicenter study was to investigate the frequency and clinical features of patients with biallelic variants in NER genes who are predominantly presenting with neurological signs. METHODS: In-house exome and genome datasets of 14,303 patients, including 3543 neurological cases, were screened for deleterious variants in NER-related genes. Clinical workup included in-depth neurological and dermatological assessments. RESULTS: We identified 13 patients with variants in ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly proven biallelic, including five different recurrent and six novel variants. All individuals had adult-onset progressive neurological deterioration with ataxia, dementia, and frequently chorea, neuropathy, and spasticity. Brain magnetic resonance imaging showed profound global brain atrophy in all patients. Dermatological examination did not show any skin cancer or pronounced ultraviolet damage. CONCLUSIONS: We introduce NERDND as adult-onset neurodegeneration (ND ) within the spectrum of autosomal recessive NER disorders (NERD). Our study demonstrates that NERDND is probably an underdiagnosed cause of neurodegeneration in adulthood and should be considered in patients with overlapping cognitive and movement abnormalities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Síndrome de Cockayne , Neoplasias Cutâneas , Xeroderma Pigmentoso , Adulto , Síndrome de Cockayne/complicações , Síndrome de Cockayne/genética , Reparo do DNA/genética , Humanos , Pele , Neoplasias Cutâneas/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
10.
Mol Psychiatry ; 26(10): 5824-5832, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34561610

RESUMO

Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous disorder. To which extent genetic aberrations dictate clinical presentation remains elusive. We investigated the spectrum of genetic causes and assessed the genotype-driven differences in biomarker profiles, disease severity and clinical manifestation by recruiting 509 FTD patients from different centers of the German FTLD consortium where individuals were clinically assessed including biomarker analysis. Exome sequencing as well as C9orf72 repeat analysis were performed in all patients. These genetic analyses resulted in a diagnostic yield of 18.1%. Pathogenic variants in C9orf72 (n = 47), GRN (n = 26), MAPT (n = 11), TBK1 (n = 5), FUS (n = 1), TARDBP (n = 1), and CTSF (n = 1) were identified across all clinical subtypes of FTD. TBK1-associated FTD was frequent accounting for 5.4% of solved cases. Detection of a homozygous missense variant verified CTSF as an FTD gene. ABCA7 was identified as a candidate gene for monogenic FTD. The distribution of APOE alleles did not differ significantly between FTD patients and the average population. Male sex was weakly associated with clinical manifestation of the behavioral variant of FTD. Age of onset was lowest in MAPT patients. Further, high CSF neurofilament light chain levels were found to be related to GRN-associated FTD. Our study provides large-scale retrospective clinico-genetic data such as on disease manifestation and progression of FTD. These data will be relevant for counseling patients and their families.


Assuntos
Demência Frontotemporal , Proteína C9orf72/genética , Demência Frontotemporal/genética , Genótipo , Humanos , Masculino , Mutação , Estudos Retrospectivos , Sequenciamento do Exoma , Proteínas tau/genética
11.
Brain ; 144(2): 574-583, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33459760

RESUMO

The von Willebrand Factor A domain containing 1 protein, encoded by VWA1, is an extracellular matrix protein expressed in muscle and peripheral nerve. It interacts with collagen VI and perlecan, two proteins that are affected in hereditary neuromuscular disorders. Lack of VWA1 is known to compromise peripheral nerves in a Vwa1 knock-out mouse model. Exome sequencing led us to identify bi-allelic loss of function variants in VWA1 as the molecular cause underlying a so far genetically undefined neuromuscular disorder. We detected six different truncating variants in 15 affected individuals from six families of German, Arabic, and Roma descent. Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed. Our findings establish VWA1 as a new disease gene confidently implicated in this autosomal recessive neuromyopathic condition presenting with child-/adult-onset muscle weakness as a key clinical feature.


Assuntos
Proteínas da Matriz Extracelular/genética , Doenças Neuromusculares/genética , Adolescente , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Doenças Neuromusculares/patologia , Linhagem , Sequenciamento do Exoma
12.
Nucleic Acids Res ; 47(14): 7430-7443, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31147703

RESUMO

Clonal expansion of mitochondrial DNA (mtDNA) deletions is an important pathological mechanism in adults with mtDNA maintenance disorders, leading to a mosaic mitochondrial respiratory chain deficiency in skeletal muscle. This study had two aims: (i) to determine if different Mendelian mtDNA maintenance disorders showed similar pattern of mtDNA deletions and respiratory chain deficiency and (ii) to investigate the correlation between the mitochondrial genetic defect and corresponding respiratory chain deficiency. We performed a quantitative analysis of respiratory chain deficiency, at a single cell level, in a cohort of patients with mutations in mtDNA maintenance genes. Using the same tissue section, we performed laser microdissection and single cell genetic analysis to investigate the relationship between mtDNA deletion characteristics and the respiratory chain deficiency. The pattern of respiratory chain deficiency is similar with different genetic defects. We demonstrate a clear correlation between the level of mtDNA deletion and extent of respiratory chain deficiency within a single cell. Long-range and single molecule PCR shows the presence of multiple mtDNA deletions in approximately one-third of all muscle fibres. We did not detect evidence of a replicative advantage for smaller mtDNA molecules in the majority of fibres, but further analysis is needed to provide conclusive evidence.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais/genética , Mitocôndrias Musculares/genética , Doenças Mitocondriais/genética , Fibras Musculares Esqueléticas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Deleção de Sequência , Análise de Célula Única
13.
Mov Disord ; 35(1): 142-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518459

RESUMO

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration is an autosomal-recessive disorder caused by C19orf12 mutations and characterized by iron deposits in the basal ganglia. OBJECTIVES: The aim of this study was to quantify iron concentrations in deep gray matter structures using quantitative susceptibility mapping MRI and to characterize metabolic abnormalities in the pyramidal pathway using 1 H MR spectroscopy in clinically manifesting membrane protein-associated neurodegeneration patients and asymptomatic C19orf12 gene mutation heterozygous carriers. METHODS: We present data of 4 clinically affected membrane protein-associated neurodegeneration patients (mean age: 21.0 ± 2.9 years) and 9 heterozygous gene mutation carriers (mean age: 50.4 ± 9.8 years), compared to age-matched healthy controls. MRI assessments were performed on a 7.0 Tesla whole-body system, consisting of whole-brain gradient-echo scans and short echo time, single-volume MR spectroscopy in the white matter of the precentral/postcentral gyrus. Quantitative susceptibility mapping, a surrogate marker for iron concentration, was performed using a state-of-the-art multiscale dipole inversion approach with focus on the globus pallidus, thalamus, putamen, caudate nucleus, and SN. RESULTS AND CONCLUSION: In membrane protein-associated neurodegeneration patients, magnetic susceptibilities were 2 to 3 times higher in the globus pallidus (P = 0.02) and SN (P = 0.02) compared to controls. In addition, significantly higher magnetic susceptibility was observed in the caudate nucleus (P = 0.02). Non-manifesting heterozygous mutation carriers exhibited significantly increased magnetic susceptibility (relative to controls) in the putamen (P = 0.003) and caudate nucleus (P = 0.001), which may be an endophenotypic marker of genetic heterozygosity. MR spectroscopy revealed significantly increased levels of glutamate, taurine, and the combined concentration of glutamate and glutamine in membrane protein-associated neurodegeneration, which may be a correlate of corticospinal pathway dysfunction frequently observed in membrane protein-associated neurodegeneration patients. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/patologia , Ferro/metabolismo , Proteínas Mitocondriais/genética , Mutação/genética , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
14.
J Magn Reson Imaging ; 51(6): 1727-1736, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31875343

RESUMO

BACKGROUND: Muscle water T2 (T2w ) has been proposed as a biomarker to monitor disease activity and therapy effectiveness in patients with neuromuscular diseases (NMD). Multi-echo spin-echo (MESE) is known to be affected by fatty infiltration. A T2 -prepared 3D turbo spin echo (TSE) is an alternative method for T2 mapping, but has been only applied in healthy muscles. PURPOSE: To examine the performance of T2 -prepared 3D TSE in combination with spectral adiabatic inversion recovery (SPAIR) in measuring T2w in fatty infiltrated muscles based on simulations and in vivo measurements in thigh muscles of patients with NMD. STUDY TYPE: Prospective. SUBJECTS: One healthy volunteer, 34 NMD patients. FIELD STRENGTH/SEQUENCE: T2 -prepared stimulated echo acquisition mode (STEAM) magnetic resonance spectroscopy (MRS), SPAIR STEAM MRS, and SPAIR T2 -prepared STEAM MRS were performed in the subcutaneous fat of a healthy volunteer's thigh. T2 mapping based on SPAIR 2D MESE and SPAIR T2 -prepared 3D TSE was performed in the NMD patients' thigh region. Multi-TE STEAM MRS was performed for measuring a reference T2w at different thigh locations. ASSESSMENT: The behavior of the fat spectrum in the SPAIR T2 -prepared 3D TSE was simulated using Bloch simulations. The in vivo T2 results of the imaging methods were compared to the in vivo T2w MRS results. STATISTICAL TESTS: Pearson correlation coefficient with slope and intercept, relative error. RESULTS: The simulated T2 for the SPAIR T2 -prepared 3D TSE sequence remained constant within a relative error of not more than 4% up to a fat fraction of 80%. In vivo T2 values of SPAIR T2 -prepared 3D TSE were in good agreement with the T2w values of STEAM MRS (R = 0.86; slope = 1.12; intercept = -1.41 ms). In vivo T2 values of SPAIR 2D MESE showed large deviations from the T2w values of STEAM MRS (R = 0.14; slope = 0.32; intercept = 38.83 ms). DATA CONCLUSION: The proposed SPAIR T2 -prepared 3D TSE shows reduced sensitivity to fatty infiltration for T2w mapping in the thigh muscles of NMD patients. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1727-1736.


Assuntos
Doenças Neuromusculares , Coxa da Perna , Humanos , Imageamento por Ressonância Magnética , Doenças Neuromusculares/diagnóstico por imagem , Estudos Prospectivos , Coxa da Perna/diagnóstico por imagem , Água
15.
Acta Neurochir (Wien) ; 162(9): 2055-2059, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32500255

RESUMO

We present a rare case of a patient initially presenting with unilateral abdominal wall bulging and radicular pain caused by a lateral disc herniation at Th11/12, later suffering from a hernia recurrence with bilateral disc prolapse and motor deficits. The patient underwent sequesterectomy via a right hemilaminectomy at Th11, and after 8 weeks, a bilateral sequesterectomy with semirigid fusion Th11/12 was performed. Unilateral motor deficits at the thoracic level have been discussed in case reports; a bilateral disc protrusion with abdominal wall bulging occurring as a recurrent disc herniation has never been described before.


Assuntos
Parede Abdominal/patologia , Degeneração do Disco Intervertebral/cirurgia , Deslocamento do Disco Intervertebral/cirurgia , Laminectomia/métodos , Paresia/etiologia , Humanos , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade
16.
Nervenarzt ; 91(6): 537-540, 2020 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-32367146

RESUMO

This article presents the case of a 74-year-old female patient who first developed a progressive disease with sensory neuropathy, cerebellar ataxia and bilateral vestibulopathy at the age of 60 years. The family history was unremarkable. Magnetic resonance imaging (MRI) showed atrophy of the cerebellum predominantly in the vermis and atrophy of the spinal cord. The patient was given the syndromic diagnosis of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). In 2019 the underlying genetic cause of CANVAS was discovered to be an intronic repeat expansion in the RFC1 gene with autosomal recessive inheritance. The patient exhibited the full clinical picture of CANVAS and was tested positive for this repeat expansion on both alleles. The CANVAS is a relatively frequent cause of late-onset hereditary ataxia (estimated prevalence 5­13/100,000). In contrast to the present patient, the full clinical picture is not always present. Therefore, testing for the RFC1 gene expansion is recommended in the work-up of patients with otherwise unexplained late-onset sporadic ataxia. As intronic repeat expansions cannot be identified by next generation sequencing methods, specific testing is necessary.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Idoso , Ataxia , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Feminino , Humanos , Síndrome
18.
NMR Biomed ; 32(8): e4111, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180167

RESUMO

Quantitative imaging techniques are emerging in the field of magnetic resonance imaging of neuromuscular diseases (NMD). T2 of water (T2w ) is considered an important imaging marker to assess acute and chronic alterations of the muscle fibers, being generally interpreted as an indicator for "disease activity" in the muscle tissue. To validate the accuracy and robustness of quantitative imaging methods, 1 H magnetic resonance spectroscopy (MRS) can be used as a gold standard. The purpose of the present work was to investigate T2w of remaining muscle tissue in regions of higher proton density fat fraction (PDFF) in 40 patients with defined NMD using multi-TE single-voxel 1 H MRS. Patients underwent MR measurements on a 3 T system to perform a multi-TE single-voxel stimulated echo acquisition method (STEAM) MRS (TE = 11/15/20/25(/35) ms) in regions of healthy, edematous and fatty thigh muscle tissue. Muscle regions for MRS were selected based on T2 -weighted water and fat images of a two-echo 2D Dixon TSE. MRS results were confined to regions with qualitatively defined remaining muscle tissue without edema and high fat content, based on visual grading of the imaging data. The results showed decreased T2w values with increasing PDFF with R2  = 0.45 (p < 10-3 ) (linear fit) and with R2  = 0.51 (exponential fit). The observed dependence of T2w on PDFF should be considered when using T2w as a marker in NMD imaging and when performing single-voxel MRS for T2w in regions enclosing edematous, nonedematous and fatty infiltrated muscle tissue.


Assuntos
Tecido Adiposo/patologia , Músculo Esquelético/patologia , Doenças Neuromusculares/patologia , Água/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prótons
19.
Headache ; 58(1): 45-52, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29139113

RESUMO

BACKGROUND: Mitochondrial diseases are a heterogeneous group of diseases with different phenotypes and genotypes. Headache and, particularly migraine, seems to occur often in patients with MELAS and in patients with CPEO phenotypes. The International Classification of Headache Disorders (ICHD-3 beta) has classified headache as a secondary entity only in MELAS patients. Other headache phenotypes in mitochondrial diseases are not considered in ICHD-3beta. In this study, we analyzed headache phenomenology in a large group of patients with mitochondrial disorders. METHODS: A cross-sectional questionnaire-based study on 85 patients with mitochondrial disease with different genotypes and phenotypes was conducted between 2010 and 2011. A structured headache questionnaire according to ICHD-2 was used followed by a telephone interview by a headache expert. Prevalence and characteristics of headache could be analyzed in 42 patients. Headache diagnosis was correlated with genotypes and phenotypes. In addition, the mtDNA haplotype H was analyzed. RESULTS: Headache was reported in 29/42 (70%; 95% CI, from 55.1 to 83.0%) of the patients. Tension-type headache (TTH) showed the highest prevalence in 16/42 (38%; 95% CI, from 23.4 to 52.8%) patients, followed by migraine and probable migraine in 12/42 (29%; 95% CI, from 14.9 to 42.2%) patients. Nine of the 42 (21%; 95% CI, from 9 to 33.8%) patients reported two different headache types. Patients with the mtDNA mutation m.3243A > G (n = 8) and MELAS (n = 7) showed the highest prevalence of headaches (88% and 85%, respectively). In patients with the CPEO phenotype (n = 32), headache occurred in 14/18 (78%; 95% CI, from 58.6 to 97%) of patients with single deletions, and in 7/13 (54%; 95% CI, from 26.7 to 80.9%) patients with multiple mtDNA deletions. There were no association between the mtDNA haplotype Hand the headache-diagnosis. CONCLUSIONS: The prevalence of headache was higher in patients with mitochondrial diseases than reported in the general population. In all phenotype and genotype groups, TTH was more frequent than migraine. The data also show that the current ICHD-3 beta exclusively focused on MELAS syndrome as vasculopathy does not consider the broader spectrum of headache phenotypes in mitochondrial disorders.


Assuntos
Cefaleia/epidemiologia , Cefaleia/etiologia , Doenças Mitocondriais/complicações , Adolescente , Adulto , Idoso , Estudos Transversais , DNA Mitocondrial/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Mutação/genética , Fenótipo , Prevalência , Inquéritos e Questionários , Adulto Jovem
20.
J Comput Assist Tomogr ; 42(4): 574-579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29613984

RESUMO

OBJECTIVE: The assessment of fatty infiltration and edema in the musculature of patients with neuromuscular diseases (NMDs) typically requires the separate performance of T1-weighted and fat-suppressed T2-weighted sequences. T2-weighted Dixon turbo spin echo (TSE) enables the generation of T2-weighted fat- and water-separated images, which can be used to assess both pathologies simultaneously. The present study examines the diagnostic performance of T2-weighted Dixon TSE compared with the standard sequences in 10 patients with NMDs and 10 healthy subjects. METHODS: Whole-body magnetic resonance imaging was performed including T1-weighted Dixon fast field echo, T2-weighted short-tau inversion recovery, and T2-weighted Dixon TSE. Fatty infiltration and intramuscular edema were rated by 2 radiologists using visual semiquantitative rating scales. To assess intermethod and interrater agreement, weighted Cohen's κ coefficients were calculated. RESULTS: The ratings of fatty infiltration showed high intermethod and high interrater agreement (T1-weighted Dixon fast field echo vs T2-weighted Dixon TSE fat image). The evaluation of edematous changes showed high intermethod and good interrater agreement (T2-weighted short-tau inversion recovery vs T2-weighted Dixon TSE water image). CONCLUSIONS: T2-weighted Dixon TSE imaging is an alternative for accelerated simultaneous grading of whole-body skeletal muscle fat infiltration and edema in patients with NMDs.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Edema/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Músculo Esquelético/diagnóstico por imagem , Doenças Neuromusculares/diagnóstico por imagem , Imagem Corporal Total/métodos , Edema/complicações , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doenças Neuromusculares/complicações , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA