Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(9): e1009943, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555129

RESUMO

Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.


Assuntos
Glicólise/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/metabolismo , Fagossomos/metabolismo , Salmonelose Animal/metabolismo , Animais , Perfilação da Expressão Gênica , Metabolômica , Camundongos , Salmonella typhimurium/metabolismo
2.
Medicina (Kaunas) ; 59(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629738

RESUMO

Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Medicina Regenerativa , Humanos , Músculos
3.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614061

RESUMO

Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/metabolismo , Proteômica , Neoplasias da Próstata/metabolismo , Próstata/patologia , Aminoácidos/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
4.
J Cell Physiol ; 234(8): 13277-13291, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30575033

RESUMO

S-Adenosyl-l-methionine (AdoMet) is a naturally and widely occurring sulfonium compound that plays a primary role in cell metabolism and acts as the principal methyl donor in many methylation reactions. AdoMet also exhibits antiproliferative and proapoptotic activities in different cancer cells. However, the molecular mechanisms underlying the effects exerted by AdoMet have only been partially studied. In the current study, we evaluated the antiproliferative effect of AdoMet on Cal-33 oral and JHU-SCC-011 laryngeal squamous cancer cells to define the underlying mechanisms. We demonstrated that AdoMet induced apoptosis in Cal-33 and JHU-SCC-011 cells, involving a caspase-dependent mechanism paralleled by an increased Bax/Bcl-2 ratio. Moreover, we showed, for the first time, that AdoMet induced ER-stress in Cal-33 cells and activated the unfolded protein response, which can be responsible for apoptosis induction through the activation of CHOP and JNK. In addition, AdoMet-induced ER-stress was followed by autophagy with a consistent increase in the levels of the autophagic marker LC3B-II, which was indeed potentiated by the autophago-lysosome inhibitor chloroquine. As both escape from apoptosis and decreased activation of JNK are mechanisms of resistance to cisplatin (cDPP), an agent usually used in cancer therapy, we have evaluated the effects of AdoMet in combination with cDPP on Cal-33 cells. Our data showed that the combined treatment resulted in a strong synergism in inhibiting cell proliferation and in enhancing apoptosis via intrinsic mechanism. These results demonstrate that AdoMet has ER-stress-mediated antiproliferative activity and synergizes with cDDP on cell growth inhibition, thus providing the basis for its use in new anticancer strategies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , S-Adenosilmetionina/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos
5.
Rev Cardiovasc Med ; 20(4): 221-230, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31912713

RESUMO

Cardiovascular diseases are responsible for approximately one-third of deaths around the world. Among cardiovascular diseases, the largest single cause of death is ischemic heart disease. Ischemic heart disease typically manifests as progressive constriction of the coronary arteries, which obstructs blood flow to the heart and can ultimately lead to myocardial infarction. This adversely affects the structure and function of the heart. Conventional treatments lack the ability to treat the myocardium lost during an acute myocardial infarction. Stem cell therapy offers an excellent solution for myocardial regeneration. Stem cell sources such as adult stem cells, embryonic and induced pluripotent stem cells have been the focal point of research in cardiac tissue engineering. However, cell survival and engraftment post-transplantation are major limitations that must be addressed prior to widespread use of this technology. Recently, biomaterials have been introduced as 3D vehicles to facilitate stem cell transplantation into infarct sites. This has shown significant promise with improved cell survival after transplantation. In this review, we discuss the various injectable hydrogels that have been tried in cardiac tissue engineering. Exploring and optimizing these cell-material interactions will guide cardiac tissue engineering towards developing stem cell based functional 3D constructs for cardiac regeneration.


Assuntos
Cardiopatias/cirurgia , Miocárdio/patologia , Regeneração , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Sobrevivência Celular , Sobrevivência de Enxerto , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Hidrogéis , Injeções , Recuperação de Função Fisiológica
6.
J Cell Physiol ; 233(2): 1370-1383, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28518408

RESUMO

The naturally occurring sulfonium compound S-adenosyl-L-methionine (AdoMet) is an ubiquitous sulfur-nucleoside that represents the main methyl donor in numerous methylation reactions. In recent years, it has been shown that AdoMet possesses antiproliferative properties in various cancer cells, but the molecular mechanisms at the basis of the effect induced by AdoMet have been only in part investigated. In the present study, we found that AdoMet strongly inhibited the proliferation of breast cancer cells MCF-7 by inducing both autophagy and apoptosis. AdoMet consistently enhanced the levels of the autophagy markers beclin-1 and LC3B-II, and caused a significant increase of pro-apoptotic Bax/Bcl-2 ratio paralleled by poly (ADP ribose) polymerase (PARP) and caspase 9, and 6 cleavage. Notably, AdoMet, already at low doses, raised the percentage of cells in G2 /M phase of cell cycle by down-regulating the expression of cell cycle-regulatory proteins cyclin B and cyclin E with a remarkable increase of p53, p27, and p21. We also evaluated the combination of AdoMet and the autophagy inhibitor chloroquine (CLC) showing that autophagy block is synergistic in inducing both growth inhibition and apoptosis. These effects were paralleled by a strong inhibition of the activity of AKT and of the downstream effector mTOR and by an increased cleavage of caspase-6 and PARP. These data suggest, for the first time, that autophagy can act as an escape mechanism from the apoptotic activity of AdoMet, and that AdoMet could be used in combination with CLC or its analogs in the treatment of breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Cloroquina/farmacologia , S-Adenosilmetionina/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
7.
Clin Sci (Lond) ; 131(8): 699-713, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28209631

RESUMO

Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells that have been successfully used in human bone tissue engineering. To establish whether these cells can lead to a bone tissue ready to be grafted, we checked DPSCs for their osteogenic and angiogenic differentiation capabilities with the specific aim of obtaining a new tool for bone transplantation. Therefore, hDPSCs were specifically selected from the stromal-vascular dental pulp fraction, using appropriate markers, and cultured. Growth curves, expression of bone-related markers, calcification and angiogenesis as well as an in vivo transplantation assay were performed. We found that hDPSCs proliferate, differentiate into osteoblasts and express high levels of angiogenic genes, such as vascular endothelial growth factor and platelet-derived growth factor A. Human DPSCs, after 40 days of culture, give rise to a 3D structure resembling a woven fibrous bone. These woven bone (WB) samples were analysed using classic histology and synchrotron-based, X-ray phase-contrast microtomography and holotomography. WB showed histological and attractive physical qualities of bone with few areas of mineralization and neovessels. Such WB, when transplanted into rats, was remodelled into vascularized bone tissue. Taken together, our data lead to the assumption that WB samples, fabricated by DPSCs, constitute a noteworthy tool and do not need the use of scaffolds, and therefore they are ready for customized regeneration.


Assuntos
Substitutos Ósseos , Polpa Dentária/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Adulto , Animais , Transplante Ósseo/métodos , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Quimiotaxia , Humanos , Camundongos Nus , Neovascularização Fisiológica/fisiologia , Osteocalcina/metabolismo , Osteogênese/fisiologia , Microtomografia por Raio-X/métodos , Adulto Jovem
8.
Stem Cells ; 32(1): 279-89, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105979

RESUMO

Adult mesenchymal stem cells, such as dental pulp stem cells, are of great interest for cell-based tissue engineering strategies because they can differentiate into a variety of tissue-specific cells, above all, into osteoblasts. In recent years, epigenetic studies on stem cells have indicated that specific histone alterations and modifying enzymes play essential roles in cell differentiation. However, although several studies have reported that valproic acid (VPA)-a selective inhibitor of histone deacetylases (HDAC)-enhances osteoblast differentiation, data on osteocalcin expression-a late-stage marker of differentiation-are limited. We therefore decided to study the effect of VPA on dental pulp stem cell differentiation. A low concentration of VPA did not reduce cell viability, proliferation, or cell cycle profile. However, it was sufficient to significantly enhance matrix mineralization by increasing osteopontin and bone sialoprotein expression. In contrast, osteocalcin levels were decreased, an effect induced at the transcriptional level, and were strongly correlated with inhibition of HDAC2. In fact, HDAC2 silencing with shRNA produced a similar effect to that of VPA treatment on the expression of osteoblast-related markers. We conclude that VPA does not induce terminal differentiation of osteoblasts, but stimulates the generation of less mature cells. Moreover, specific suppression of an individual HDAC by RNA interference could enhance only a single aspect of osteoblast differentiation, and thus produce selective effects.


Assuntos
Polpa Dentária/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteocalcina/biossíntese , Ácido Valproico/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/enzimologia , Polpa Dentária/metabolismo , Regulação para Baixo/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Osteocalcina/genética , Osteopontina/metabolismo , Transfecção
9.
FASEB J ; 27(1): 13-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23024375

RESUMO

Primary tumors are responsible for 10% of cancer deaths. In most cases, the main cause of mortality is the formation of metastases. Accumulating evidence suggests that a subpopulation of tumor cells with distinct stem-like properties is responsible for tumor initiation, invasive growth, and metastasis formation. This population is defined as cancer stem cells (CSCs). Existing therapies have enhanced the length of survival after diagnosis of cancer but have completely failed in terms of recovery. CSCs appear to be resistant to chemotherapy, may remain quiescent for extended periods, and have affinity for hypoxic environments. The CSCs can be identified and isolated by different methodologies, including isolation by CSC-specific cell surface marker expression, detection of side population phenotype by Hoechst 33342 exclusion, assessment of their ability to grow as floating spheres, and aldehyde dehydrogenase (ALDH) activity assay. None of the methods mentioned are exclusively used to isolate the solid tumor CSCs, highlighting the imperative to delineate more specific markers or to use combinatorial markers and methodologies. This review provides an overview of the main characteristics and approaches used to identify, isolate, and characterize CSCs from solid tumors.


Assuntos
Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Separação Celular , Humanos
10.
J Exp Clin Cancer Res ; 43(1): 166, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877575

RESUMO

BACKGROUND: Breast cancer (BC) is a complex disease, showing heterogeneity in the genetic background, molecular subtype, and treatment algorithm. Historically, treatment strategies have been directed towards cancer cells, but these are not the unique components of the tumor bulk, where a key role is played by the tumor microenvironment (TME), whose better understanding could be crucial to obtain better outcomes. METHODS: We evaluated mitochondrial transfer (MT) by co-culturing Adipose stem cells with different Breast cancer cells (BCCs), through MitoTracker assay, Mitoception, confocal and immunofluorescence analyses. MT inhibitors were used to confirm the MT by Tunneling Nano Tubes (TNTs). MT effect on multi-drug resistance (MDR) was assessed using Doxorubicin assay and ABC transporter evaluation. In addition, ATP production was measured by Oxygen Consumption rates (OCR) and Immunoblot analysis. RESULTS: We found that MT occurs via Tunneling Nano Tubes (TNTs) and can be blocked by actin polymerization inhibitors. Furthermore, in hybrid co-cultures between ASCs and patient-derived organoids we found a massive MT. Breast Cancer cells (BCCs) with ASCs derived mitochondria (ADM) showed a reduced HIF-1α expression in hypoxic conditions, with an increased ATP production driving ABC transporters-mediated multi-drug resistance (MDR), linked to oxidative phosphorylation metabolism rewiring. CONCLUSIONS: We provide a proof-of-concept of the occurrence of Mitochondrial Transfer (MT) from Adipose Stem Cells (ASCs) to BC models. Blocking MT from ASCs to BCCs could be a new effective therapeutic strategy for BC treatment.


Assuntos
Neoplasias da Mama , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Mitocôndrias , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Mitocôndrias/metabolismo , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
11.
J Cell Physiol ; 228(8): 1762-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23359523

RESUMO

Mesenchymal stem cell (MSC) therapy holds promise for treating diseases and tissue repair. Regeneration of skeletal muscle tissue that is lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. Human Adipose stem cells (ASCs) have been reported to regenerate muscle fibers and reconstitute the pericytic cell pool after myogenic differentiation in vitro. Our aim was to evaluate the differentiation potential of constructs made from a new cross-linked hyaluronic acid (XHA) scaffold on which different sorted subpopulations of ASCs were loaded. Thirty days after engraftment in mice, we found that NG2(+) ASCs underwent a complete myogenic differentiation, fabricating a human skeletal muscle tissue, while NG2(-) ASCs merely formed a human adipose tissue. Myogenic differentiation was confirmed by the expression of MyoD, MF20, laminin, and lamin A/C by immunofluorescence and/or RT-PCR. In contrast, adipose differentiation was confirmed by the expression of adiponectin, Glut-4, and PPAR-γ. Both tissues formed expressed Class I HLA, confirming their human origin and excluding any contamination by murine cells. In conclusion, our study provides novel evidence that NG2(+) ASCs loaded on XHA scaffolds are able to fabricate a human skeletal muscle tissue in vivo without the need of a myogenic pre-differentiation step in vitro. We emphasize the translational significance of our findings for human skeletal muscle regeneration.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Antígenos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Proteoglicanas/metabolismo , Alicerces Teciduais/química , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Reagentes de Ligações Cruzadas , Humanos , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/química , Lisina/análogos & derivados , Lisina/química , Células-Tronco Mesenquimais/classificação , Camundongos , Camundongos Nus , Regeneração/genética , Engenharia Tecidual
12.
J Cell Biochem ; 114(5): 1039-49, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23129214

RESUMO

Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine.


Assuntos
Tecido Adiposo/fisiologia , Antígenos CD34/metabolismo , Colágeno/farmacologia , Tecido Conjuntivo/fisiologia , Transplante de Células-Tronco , Células-Tronco/citologia , Antígenos Thy-1/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Adolescente , Adulto , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Tecido Conjuntivo/efeitos dos fármacos , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Cavalos , Humanos , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Alicerces Teciduais/química , Adulto Jovem
13.
Cell Death Dis ; 14(9): 613, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723219

RESUMO

The ß2-Adrenergic receptor (ß2-ARs) is a cell membrane-spanning G protein-coupled receptors (GPCRs) physiologically involved in stress-related response. In many cancers, the ß2-ARs signaling drives the tumor development and transformation, also promoting the resistance to the treatments. In HNSCC cell lines, the ß2-AR selective inhibition synergistically amplifies the cytotoxic effect of the MEK 1/2 by affecting the p38/NF-kB oncogenic pathway and contemporary reducing the NRF-2 mediated antioxidant cell response. In this study, we aimed to validate the anti-tumor effect of ß2-AR blockade and the synergism with MEK/ERK and EGFR pathway inhibition in a pre-clinical orthotopic mouse model of HNSCC. Interestingly, we found a strong ß2-ARs expression in the tumors that were significantly reduced after prolonged treatment with ß2-Ars inhibitor (ICI) and EGFR mAb Cetuximab (CTX) in combination. The ß2-ARs down-regulation correlated in mice with a significant tumor growth delay, together with the MAPK signaling switch-off caused by the blockade of the MEK/ERK phosphorylation. We also demonstrated that the administration of ICI and CTX in combination unbalanced the cell ROS homeostasis by blocking the NRF-2 nuclear translocation with the relative down-regulation of the antioxidant enzyme expression. Our findings highlighted for the first time, in a pre-clinical in vivo model, the efficacy of the ß2-ARs inhibition in the treatment of the HNSCC, remarkably in combination with CTX, which is the standard of care for unresectable HNSCC.


Assuntos
Antioxidantes , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estresse Oxidativo , Anticorpos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Receptores ErbB , Quinases de Proteína Quinase Ativadas por Mitógeno
14.
FASEB J ; 25(6): 2022-30, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21385990

RESUMO

This study aimed to identify, isolate, and characterize cancer stem cells from human primary sarcomas. We performed cytometric analyses for stemness and differentiation antigens, including CD29, CD34, CD44, CD90, CD117, and CD133, on 21 human primary sarcomas on the day of surgery. From sarcoma biopsies, we obtained 2 chondrosarcoma-stabilized cell lines and 2 osteosarcoma stabilized cell lines, on which sphere formation, side population profile, stemness gene expression, and in vivo and in vitro assays were performed. All samples expressed the CD133, CD44, and CD29 markers. Therefore, we selected a CD133(+) subpopulation from stabilized cell lines that displayed the capacity to grow as sarcospheres able to initiate and sustain tumor growth in nonobese diabetic/severe combined (NOD/SCID) mice, to express stemness genes, including OCT3/4, Nanog, Sox2, and Nestin, and to differentiate into mesenchymal lineages, such as osteoblasts and adipocytes. Our findings show the existence of cancer stem cells in human primary bone sarcomas and highlight CD133 as a pivotal marker for identification of these cells. This may be of primary importance in the development of new therapeutic strategies and new prognostic procedures against these highly aggressive and metastatic tumors.


Assuntos
Antígenos CD/metabolismo , Neoplasias Ósseas/metabolismo , Condrossarcoma/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Adolescente , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Neoplasias , Neoplasias Experimentais , Adulto Jovem
15.
Methods Mol Biol ; 2535: 211-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867233

RESUMO

The ability of the cancer cells to survive hostile environment depends on their cellular stress response mechanisms. These mechanisms also help them to develop resistance to chemotherapies. Autophagy and more specifically organelle specific autophagy is one such adaptive mechanism that promotes drug resistance in cancer cells. Endoplasmic reticulum-specific autophagy or ER-phagy has been more recently described to overcome ER-stress through the degradation of damaged ER. ER-resident proteins such as FAM134B act as ER-phagy receptors to specifically target damaged ER for degradation through autophagy. Moreover, we had recently deciphered that ER-phagy facilitates cancer cell survival during hypoxic stress and we predict that this process could play a critical role in the development of drug resistance in cancer cells. Therefore, here, we provide a lay description of how ER-phagy could be investigated biochemically by Western blot analysis and silencing ER-phagy receptor genes using small interfering RNAs (siRNA).


Assuntos
Retículo Endoplasmático , Neoplasias , Autofagia/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
16.
Cell Death Dis ; 13(4): 357, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436985

RESUMO

In the tumor microenvironment, cancer cells experience hypoxia resulting in the accumulation of misfolded/unfolded proteins largely in the endoplasmic reticulum (ER). Consequently, ER proteotoxicity elicits unfolded protein response (UPR) as an adaptive mechanism to resolve ER stress. In addition to canonical UPR, proteotoxicity also stimulates the selective, autophagy-dependent, removal of discrete ER domains loaded with misfolded proteins to further alleviate ER stress. These mechanisms can favor cancer cell growth, metastasis, and long-term survival. Our investigations reveal that during hypoxia-induced ER stress, the ER-phagy receptor FAM134B targets damaged portions of ER into autophagosomes to restore ER homeostasis in cancer cells. Loss of FAM134B in breast cancer cells results in increased ER stress and reduced cell proliferation. Mechanistically, upon sensing hypoxia-induced proteotoxic stress, the ER chaperone BiP forms a complex with FAM134B and promotes ER-phagy. To prove the translational implication of our mechanistic findings, we identified vitexin as a pharmacological agent that disrupts FAM134B-BiP complex, inhibits ER-phagy, and potently suppresses breast cancer progression in vivo.


Assuntos
Autofagia , Neoplasias da Mama , Autofagia/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Hipóxia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microambiente Tumoral
17.
Front Bioeng Biotechnol ; 10: 934997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466352

RESUMO

Osteoarthritis is a very disabling disease that can be treated with both non-pharmacological and pharmacological approaches. In the last years, pharmaceutical-grade chondroitin sulfate (CS) and glucosamine emerged as symptomatic slow-acting molecules, effective in pain reduction and improved function in patients affected by osteoarthritis. CS is a sulfated glycosaminoglycan that is currently produced mainly by extraction from animal tissues, and it is commercialized as a pharmaceutical-grade ingredient and/or food supplement. However, public concern on animal product derivatives has prompted the search for alternative non-extractive production routes. Thus, different approaches were established to obtain animal-free natural identical CS. On the other hand, the unsulfated chondroitin, which can be obtained via biotechnological processes, demonstrated promising anti-inflammatory properties in vitro, in chondrocytes isolated from osteoarthritic patients. Therefore, the aim of this study was to explore the potential of chondroitin, with respect to the better-known CS, in an in vivo mouse model of knee osteoarthritis. Results indicate that the treatment with biotechnological chondroitin (BC), similarly to CS, significantly reduced the severity of mechanical allodynia in an MIA-induced osteoarthritic mouse model. Decreased cartilage damage and a reduction of inflammation- and pain-related biochemical markers were also observed. Overall, our data support a beneficial activity of biotechnological unsulfated chondroitin in the osteoarthritis model tested, thus suggesting BC as a potential functional ingredient in pharmaceuticals and nutraceuticals with the advantage of avoiding animal tissue extraction.

18.
Pain ; 163(8): 1590-1602, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862336

RESUMO

ABSTRACT: Neuropathic pain has long-term consequences in affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. In this study, we used the spared nerve injury (SNI) model to characterize the development of sensory and aversive components of neuropathic pain and to determine their electrophysiological impact across prefrontal cortex and limbic regions. Moreover, we evaluated the regulation of several genes involved in immune response and inflammation triggered by SNI. We showed that SNI led to sensorial hypersensitivity (cold and mechanical stimuli) and depressive-like behavior lasting 12 months after nerve injury. Of interest, changes in nonemotional cognitive tasks (novel object recognition and Y maze) showed in 1-month SNI mice were not evident normal in the 12-month SNI animals. In vivo electrophysiology revealed an impaired long-term potentiation at prefrontal cortex-nucleus accumbens core pathway in both the 1-month and 12-month SNI mice. On the other hand, a reduced neural activity was recorded in the lateral entorhinal cortex-dentate gyrus pathway in the 1-month SNI mice, but not in the 12-month SNI mice. Finally, we observed the upregulation of specific genes involved in immune response in the hippocampus of 1-month SNI mice, but not in the 12-month SNI mice, suggesting a neuroinflammatory response that may contribute to the SNI phenotype. These data suggest that distinct brain circuits may drive the psychiatric components of neuropathic pain and pave the way for better investigation of the long-term consequences of peripheral nerve injury for which most of the available drugs are to date unsatisfactory.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Hiperalgesia/metabolismo , Potenciação de Longa Duração , Camundongos , Neuralgia/genética , Neuralgia/metabolismo , Plasticidade Neuronal , Traumatismos dos Nervos Periféricos/metabolismo
19.
J Exp Clin Cancer Res ; 41(1): 20, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016717

RESUMO

BACKGROUND: The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). METHODS: Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. RESULTS: Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. CONCLUSIONS: We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.


Assuntos
MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Animais , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Transfecção
20.
Eur Cell Mater ; 21: 304-16, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21432784

RESUMO

During human embryonic development, odontogenic tissues, deriving from the neural crest, remain undifferentiated until the adult age. This study was aimed at characterising the cells of the follicle enveloping the dental germ, due to its direct origin from neural crests. Sixty dental follicles were collected from patients aged 18 to 45 years. This research has clarified that dental follicles, if extracted in a very early stage, when dental roots did not start to be formed, contain a lineage of cells, characterised by a high degree of plasticity in comparison with other adult stem cell populations. In particular, we found that these cells share the following features with ES: (i) high levels of embryonic stem cell markers (CD90, TRA1-60, TRA1-81, OCT-4, CD133, and SSEA-4); (ii) mRNA transcripts for Nanog and Rex-1; (iii) broader potency, being able to differentiate in cell types of all three germ layer, including smooth and skeletal muscle, osteoblasts, neurons, glial cells, and adipocytes; (iv) high levels of telomerase activity; (v) ability to form embryoid bodies; (vi) ability, after injection in murine blastocysts, to be localised within the inner cell mass; (vii) no teratoma formation after injection; (viii) in vivo tissue formation after transplantation. Our results demonstrate that these cells represent a very easy accessible and extraordinary source of pluripotent cells and point out the fact that they own the cardinal feature of embryonic stem cells.


Assuntos
Saco Dentário/citologia , Embrião de Mamíferos/citologia , Crista Neural/citologia , Adulto , Animais , Blastocisto/citologia , Osso e Ossos/citologia , Agregação Celular , Diferenciação Celular , Células Cultivadas , Saco Dentário/enzimologia , Saco Dentário/transplante , Corpos Embrioides/citologia , Citometria de Fluxo , Humanos , Camundongos , Pessoa de Meia-Idade , Neurônios/citologia , Antígenos Embrionários Estágio-Específicos/metabolismo , Telomerase/metabolismo , Teratoma/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA