Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 43(2): 179-192, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31563976

RESUMO

The influence of process parameters during freeze/thaw (FT) operations is essential for the preservation of the protein stability/activity during production and storage processes in the biopharmaceutical industry. Process parameters, such as FT ramps, the final storage time and temperature, affect the occurring FT stress onto the target protein in different ways. FT stress includes cold denaturation, freeze concentration, and ice crystal formation which can result in protein aggregation. To visualize the impact of variations in FT ramps, descriptors such as solubility, phase behavior and crystal morphology were evaluated. The phase diagram-based toolbox in combination with an HTS-compatible cryo-device allowed the identification of suitable ramping schemes during FT operations. It could be clearly shown that rapid operations are needed above the glass transition temperature of the target protein to circumvent precipitation during FT cycles. Finally, a stability index is introduced which allows ranking of the systems investigated.


Assuntos
Congelamento , Gelo , Modelos Químicos , Proteínas/química
2.
Front Bioeng Biotechnol ; 10: 878838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814018

RESUMO

Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript-ELP[V2Y-45]-promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA