RESUMO
The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult-to-replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l-deficient cells are compromised in the repair of heterochromatin-associated double-stranded breaks, eliciting deletions in late-replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair-associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.
Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Heterocromatina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células , Homólogo 5 da Proteína Cromobox/genética , Homólogo 5 da Proteína Cromobox/metabolismo , Instabilidade Cromossômica , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Heterocromatina/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Transdução de SinaisRESUMO
EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss-of-function mutations have been found in myeloproliferative neoplasms, particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and short hairpin RNA induces megakaryocyte (MK) commitment by accelerating lineage marker acquisition without change in proliferation. Later in differentiation, EZH2 inhibition blocks proliferation and polyploidization and decreases proplatelet formation. EZH2 inhibitors similarly reduce MK polyploidization and proplatelet formation in vitro and platelet levels in vivo in a JAK2V617F background. In transcriptome profiling, the defect in proplatelet formation was associated with an aberrant actin cytoskeleton regulation pathway, whereas polyploidization was associated with an inhibition of expression of genes involved in DNA replication and repair and an upregulation of cyclin-dependent kinase inhibitors, particularly CDKN1A and CDKN2D. The knockdown of CDKN1A and to a lesser extent CDKN2D could partially rescue the percentage of polyploid MKs. Moreover, H3K27me3 and EZH2 chromatin immunoprecipitation assays revealed that CDKN1A is a direct EZH2 target and CDKN2D expression is not directly regulated by EZH2, suggesting that EZH2 controls MK polyploidization directly through CDKN1A and indirectly through CDKN2D.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Megacariócitos/citologia , Trombopoese , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Megacariócitos/metabolismo , Camundongos , Interferência de RNA , TranscriptomaRESUMO
B-cell prolymphocytic leukemia (B-PLL) is a rare hematological disorder whose underlying oncogenic mechanisms are poorly understood. Our cytogenetic and molecular assessments of 34 patients with B-PLL revealed several disease-specific features and potential therapeutic targets. The karyotype was complex (≥3 abnormalities) in 73% of the patients and highly complex (≥5 abnormalities) in 45%. The most frequent chromosomal aberrations were translocations involving MYC [t(MYC)] (62%), deletion (del)17p (38%), trisomy (tri)18 (30%), del13q (29%), tri3 (24%), tri12 (24%), and del8p (23%). Twenty-six (76%) of the 34 patients exhibited an MYC aberration, resulting from mutually exclusive translocations or gains. Whole-exome sequencing revealed frequent mutations in TP53, MYD88, BCOR, MYC, SF3B1, SETD2, CHD2, CXCR4, and BCLAF1. The majority of B-PLL used the IGHV3 or IGHV4 subgroups (89%) and displayed significantly mutated IGHV genes (79%). We identified 3 distinct cytogenetic risk groups: low risk (no MYC aberration), intermediate risk (MYC aberration but no del17p), and high risk (MYC aberration and del17p) (P = .0006). In vitro drug response profiling revealed that the combination of a B-cell receptor or BCL2 inhibitor with OTX015 (a bromodomain and extra-terminal motif inhibitor targeting MYC) was associated with significantly lower viability of B-PLL cells harboring a t(MYC). We concluded that cytogenetic analysis is a useful diagnostic and prognostic tool in B-PLL. Targeting MYC may be a useful treatment option in this disease.
Assuntos
Leucemia Prolinfocítica Tipo Células B/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética , Idoso , Idoso de 80 Anos ou mais , Aberrações Cromossômicas , Análise Citogenética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , PrognósticoRESUMO
Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.
Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Conformação ProteicaRESUMO
Primary ovarian insufficiency (POI) affects ~ 1-3, 7% of women under forty and is a public health problem. Most causes are unknown, but an increasing number of genetic causes have been identified recently. The identification of such causes is essential for genetic and therapeutic counseling in patients and their families. We performed whole exome sequencing in two Caucasian sisters displaying non syndromic POI and their unaffected mother. We identified two novel pathogenic variants in STAG3 encoding a meiosis-specific subunit of the cohesin ring, which ensures correct sister chromatid cohesion: a c.3052delC truncating mutation in exon 28 yielding p.Arg1018Aspfs*14, and a c.659T > G substitution in exon seven yielding p.Leu220Arg. Leu220, highly conserved throughout species, belongs to the STAG domain conserved with other mitotic subunits of the cohesion complex STAG1 and 2. In silico analysis reveals that this substitution markedly impacts the structure of this domain. The truncation removes the last 206 C-terminal residues, not conserved in STAG1 and 2, supporting an important specific role in STAG3, especially meiosis. This is the first occurrence of STAG3 mutations in a Caucasian family. Very little is known about the function of STAG proteins domains. The "knock out-like" phenotype described here supports the crucial role of a single residue in the STAG domain and of the C-terminal region in STAG3 function. In conclusion, this observation shows the necessity to perform the genetic study of POI worldwide including STAG3. This could lead to appropriate genetic counseling and long term follow-up since these patients may develop ovarian tumors.
Assuntos
Mutação , Proteínas Nucleares/genética , Insuficiência Ovariana Primária/genética , Adolescente , Proteínas de Ciclo Celular , Feminino , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Insuficiência Ovariana Primária/etnologia , População Branca/genéticaRESUMO
So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (ΨKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.
Assuntos
Carcinoma de Células Renais/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Movimento Celular/genética , Frequência do Gene , Humanos , Invasividade Neoplásica/genética , SumoilaçãoRESUMO
Facioscapulohumeral dystrophy (FSHD) is a neuromuscular disease with a prevalence that could reach 1 in 8,000 characterized by progressive asymmetric muscle weakness. Myoblasts isolated from FSHD muscles exhibit morphological differentiation defects and show a distinct transcription profile. These abnormalities may be linked to the muscle weakness in FSHD patients. We have tested whether fusion of FSHD myoblasts with primary myoblasts isolated from healthy individuals could correct the differentiation defects. Our results show that the number of hybrid myotubes with normal phenotype increased with the percentage of normal myoblasts initially cultured. We demonstrated that a minimum of 50% of normal nuclei is required for a phenotypic correction of the FSHD phenotype. Moreover, transcriptomic profiles of phenotypically corrected hybrid myotubes showed that the expression of deregulated genes in FSHD myotubes became almost normal. The number of deregulated pathways also decreased from 39 in FSHD myotubes to one in hybrid myotubes formed with 40% FSHD and 60% normal myoblasts. We thus propose that while phenotypical and functional correction of FSHD is feasible, it requires more than 50% of normal myoblasts, it creates limitations for cell therapy in the FSHD context.
Assuntos
Diferenciação Celular/fisiologia , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos/citologia , Adulto , Diferenciação Celular/genética , Células Cultivadas , Feminino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Adulto JovemAssuntos
Predisposição Genética para Doença/genética , Leucemia/genética , Síndromes Mielodisplásicas/genética , Xeroderma Pigmentoso/genética , Cariótipo Anormal , Adolescente , Adulto , Criança , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Efeito Fundador , Genes p53/genética , Humanos , Masculino , Mutação , Proteína Supressora de Tumor p53/genética , Xeroderma Pigmentoso/complicações , Adulto JovemRESUMO
The transcription factor Ikaros regulates the development of hematopoietic cells. Ikaros-deficient animals fail to develop B cells and display a T-cell malignancy, which is correlated with altered Notch signaling. Recently, loss of Ikaros was associated with progression of myeloproliferative neoplasms to acute myeloid leukemia and increasing evidence shows that Ikaros is also critical for the regulation of myeloid development. Previous studies showed that Ikaros-deficient mice have increased megakaryopoiesis, but the molecular mechanism of this phenomenon remains unknown. Here, we show that Ikaros overexpression decreases NOTCH-induced megakaryocytic specification, and represses expression of several megakaryocytic genes including GATA-1 to block differentiation and terminal maturation. We also demonstrate that Ikaros expression is differentially regulated by GATA-2 and GATA-1 during megakaryocytic differentiation and reveal that the combined loss of Ikzf1 and Gata1 leads to synthetic lethality in vivo associated with prominent defects in erythroid cells and an expansion of megakaryocyte progenitors. Taken together, our observations demonstrate an important functional interplay between Ikaros, GATA factors, and the NOTCH signaling pathway in specification and homeostasis of the megakaryocyte lineage.
Assuntos
Fator de Transcrição GATA1/metabolismo , Fator de Transcrição Ikaros/fisiologia , Receptores Notch/metabolismo , Trombopoese/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Megacariócitos/metabolismo , Megacariócitos/fisiologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
The Atlas of Genetics and Cytogenetics in Oncology and Haematology (http://AtlasGeneticsOncology.org) is a peer-reviewed internet journal/encyclopaedia/database focused on genes implicated in cancer, cytogenetics and clinical entities in cancer and cancer-prone hereditary diseases. The main goal of the Atlas is to provide review articles that describe complementary topics, namely, genes, genetic abnormalities, histopathology, clinical diagnoses and a large iconography. This description, which was historically based on karyotypic abnormalities and in situ hybridization (fluorescence in situ hybridization) techniques, now benefits from comparative genomic hybridization and massive sequencing, uncovering a tremendous amount of genetic rearrangements. As the Atlas combines different types of information (genes, genetic abnormalities, histopathology, clinical diagnoses and external links), its content is currently unique. The Atlas is a cognitive tool for fundamental and clinical research and has developed into an encyclopaedic work. In clinical practice, it contributes to the cytogenetic diagnosis and may guide treatment decision making, particularly regarding rare diseases (because they are numerous and are frequently encountered). Readers as well as the authors of the Atlas are researchers and/or clinicians.
Assuntos
Bases de Dados Genéticas , Neoplasias/genética , Análise Citogenética , Genes Neoplásicos , Neoplasias Hematológicas/genética , Humanos , Internet , Publicações Periódicas como AssuntoRESUMO
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression.
Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos Esqueléticos/metabolismo , Adulto , Diferenciação Celular/genética , Células Cultivadas , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Desenvolvimento Muscular/genética , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos Esqueléticos/patologia , Regulação para Cima , Adulto JovemRESUMO
PURPOSE: Improved prognostic accuracy for treatment response and a wider understanding of drug effects in humans are crucial for enhancing the utility of sorafenib and other promising targeted therapies. We developed a strategy of global genomic investigation of sequential tumor biopsy samples at baseline and 21 days post treatment, and applied this approach in a phase I study of sorafenib plus dacarbazine in patients with solid tumors. The objective of this study was also to validate functional parameters of DCE-US as surrogate markers to predict earlier response. EXPERIMENTAL DESIGN: Patients received 21-day cycles of oral sorafenib, 400 mg twice daily and dacarbazine, 1,000 mg/m(2) in a 1-h intravenous infusion on day 1. Efficacy was assessed using response evaluation criteria in solid tumors. Sequential biopsy samples (baseline and day 21) were obtained from the same tumor. Changes from baseline in global gene expression (GE) measured by genomic microarrays and in tumor vascularity at baseline, D8, D21, D 42 and every 2 cycles using dynamic contrast-enhanced ultrasonography (DCE-US) were analyzed for patients with and without a clinical response to treatment at 3 months. RESULTS: Among 23 patients evaluable for treatment efficacy, 17 were eligible for gene expression and DCE-US analyses. One patient achieved a partial response; 14 exhibited stable disease. Ten patients were defined as exhibiting stable disease (SD) and 7, progressive disease (PD) at 3 months. Genomic analyses identified a 237-gene signature that distinguished SD from PD at 3 months. Of note, CDK4 overexpression and PDGFR downregulation were associated with PD. Functional parameters of DCE-US representing the blood volume at baseline, day 8, and day 21 were correlated with disease progression at 3 months. CONCLUSIONS: This novel approach of sequential investigations in a phase I trial was feasible, detecting early changes in gene expression and tumor vascularity evaluated using DCE-US that may be predictive of clinical outcome.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Idoso , Biópsia , Dacarbazina/administração & dosagem , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologia , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Sorafenibe , UltrassonografiaRESUMO
OBJECTIVE: To try and identify a molecular signature for pathological staging and/or grading. through microarray analysis. PATIENTS AND METHODS: We performed a prospective multicentre study between September 2007 and May 2008 that included 108 bladder tumours (45 pTa, 35 pT1 and 28>pT1). Microarray analysis was performed using Agilent Technologies Human Whole Genome 4 × 44K oligonucleotide microarrays (Agilent, Santa Clara, CA, USA). A 'dual colour' method was used vs a reference pool of tumours. From the lists of genes provided by the Biometric Research Branch class comparison analyses, we validated the microarray results of 38 selected differentially expressed genes using reverse transcriptase quantitative PCR in another bladder tumour cohort (n = 95). RESULTS: The cluster 'superficial vs invasive stage' correctly classified 92.9% of invasive stages and 66.3% of superficial stages. Among the superficial tumours, the cluster analysis showed that pT1b tumours were closer to invasive stages than pT1a tumours. We also found molecular differences between low and high grade superficial tumours, but these differences were less well defined than the difference observed for staging. CONCLUSIONS: We confirmed that the histopathological classification into subgroups pTa, pT1a and pT1b can be translated into a molecular signature with a continuous progression of deregulation (overexpression or repression of these genes) from superficial (pTa) to more invasive (pT1a then b) stages.
Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Análise em Microsséries , Neoplasias da Bexiga Urinária/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , França/epidemiologia , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Estudos Prospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidadeRESUMO
In most mammalian species, a critical step of placenta development is the fusion of trophoblast cells into a multinucleated syncytiotrophoblast layer fulfilling essential fetomaternal exchange functions. Key insights into this process came from the discovery of envelope genes of retroviral origin, the syncytins, independently acquired by the human (syncytin-1 and -2), mouse (syncytin-A and -B), and rabbit (syncytin-Ory1) genomes, with fusogenic properties and placenta-specific expression. We previously showed that mouse syncytin-A is essential for the formation of one of the two syncytiotrophoblast layers and for embryo survival. Here, we have generated syncytin-B KO mice and demonstrate that syncytin-B null placenta displays impaired formation of syncytiotrophoblast layer II (ST-II), with evidence of unfused apposed cells, and enlargement of maternal lacunae disrupting the placenta architecture. Unexpectedly, syncytin-B null embryos are viable, with only limited late-onset growth retardation and reduced neonate number. Microarray analyses identified up-regulation of the connexin 30 gene in mutant placentae, with the protein localized at the fetomaternal interface, suggesting gap junction-mediated compensatory mechanisms. Finally, double-KO mice demonstrate premature death of syncytin-A null embryos if syncytin-B is deleted, indicating cooperation between ST-I and ST-II. These findings establish that both endogenous retrovirus-derived syncytin genes contribute independently to the formation of the two syncytiotrophoblast layers during placenta formation, demonstrating a major role of retroviral gene capture, through convergent evolution, to generate multiple placental structures. Although some are absolutely required for completion of pregnancy, others are still amenable to "epigenetic" compensations, thus illustrating the complexity of the molecular machinery that developed during placental evolution.
Assuntos
Produtos do Gene env/genética , Proteínas da Gravidez/genética , Retroviridae/genética , Trofoblastos/metabolismo , Animais , Epigênese Genética , Feminino , Genoma , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fases de Leitura Aberta , Placenta/metabolismo , Gravidez , Prenhez , CoelhosRESUMO
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Assuntos
Diferenciação Celular , Humanos , Proliferação de Células , Mioblastos/metabolismoRESUMO
BACKGROUND: miRNA profiling performed in myogenic cells and biopsies from skeletal muscles has previously identified miRNAs involved in myogenesis. RESULTS: Here, we have performed miRNA transcriptome profiling in human affinity-purified CD56+ myoblasts induced to differentiate in vitro. In total, we have identified 60 miRNAs differentially expressed during myogenic differentiation. Many were not known for being differentially expressed during myogenic differentiation. Of these, 14 (miR-23b, miR-28, miR-98, miR-103, miR-107, miR-193a, miR-210, miR-324-5p, miR-324-3p, miR-331, miR-374, miR-432, miR-502, and miR-660) were upregulated and 6 (miR-31, miR-451, miR-452, miR-565, miR-594 and miR-659) were downregulated. mRNA transcriptome profiling performed in parallel resulted in identification of 6,616 genes differentially expressed during myogenic differentiation. CONCLUSIONS: This simultaneous miRNA/mRNA transcriptome profiling allowed us to predict with high accuracy target genes of myogenesis-related microRNAs and to deduce their functions.
Assuntos
Diferenciação Celular/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , RNA Mensageiro/metabolismo , Antígeno CD56/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , MicroRNAs/fisiologia , RNA Mensageiro/genética , Regulação para CimaRESUMO
Cervical carcinoma remains a leading cause of female mortality worldwide and over 90% of these tumors contain the human papillomavirus (HPV) genome. Cross-talk between the epidermal growth factor receptor and HPV has been reported and is implicated in tumor progression. The combination of the antiviral compound cidofovir (Cd) with the monoclonal antibody antiepidermal growth factor receptor cetuximab (Cx) was evaluated. HPV-positive (HeLa and Me180) and HPV-negative (C33A, H460 and A549) human cancer cell lines were incubated with Cd (1-10 µg/ml) and/or Cx (10 or 50 µg/ml). The antitumor effect of the combination was assessed in vitro using a clonogenic survival assay, cell cycle analysis, and phospho-H2AX level. Tumor growth delay was assayed in vivo using xenograft models. A pan-genomic analysis was carried out to identify the genes expressed differentially in untreated HeLa HPV-positive cells versus cells treated by the Cd-Cx combination. The Cd-Cx combination inhibited proliferation in all the cell lines tested. The association of Cd and Cx exerted a synergistic activity on HPV-positive but not on HPV-negative cell lines. The combination delayed tumor growth of HPV-positive tumors in vivo; however, no efficacy was reported on HPV-negative C33A xenografts nor on cell lines treated by single-drug therapy. The combination induced an S-phase arrest associated with an enhanced level of the double-strand break in Me180 and HeLa cell lines. Gene profiling assays showed a significant differential modulation of genes in HeLa cell lines treated with the combination involving the EGR-1 transcription factor. The current data support a synergistic antiproliferative action of the Cd-Cx combination on HPV-related cervical tumors.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Citosina/análogos & derivados , Organofosfonatos/farmacologia , Papillomaviridae/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos/administração & dosagem , Antivirais/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetuximab , Cidofovir , Citosina/administração & dosagem , Citosina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Organofosfonatos/administração & dosagemRESUMO
The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.
Assuntos
Glioma , Sarcoma de Ewing , Adolescente , Criança , Humanos , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos HLA/genética , Antígenos HLA-B/genética , Sarcoma de Ewing/genética , Animais , Adulto JovemRESUMO
Pediatric patients with recurrent and refractory cancers are in most need for new treatments. This study developed patient-derived-xenograft (PDX) models within the European MAPPYACTS cancer precision medicine trial (NCT02613962). To date, 131 PDX models were established following heterotopical and/or orthotopical implantation in immunocompromised mice: 76 sarcomas, 25 other solid tumors, 12 central nervous system tumors, 15 acute leukemias, and 3 lymphomas. PDX establishment rate was 43%. Histology, whole exome and RNA sequencing revealed a high concordance with the primary patient's tumor profile, human leukocyte-antigen characteristics and specific metabolic pathway signatures. A detailed patient molecular characterization, including specific mutations prioritized in the clinical molecular tumor boards are provided. Ninety models were shared with the IMI2 ITCC Pediatric Preclinical Proof-of-concept Platform (IMI2 ITCC-P4) for further exploitation. This PDX biobank of unique recurrent childhood cancers provides an essential support for basic and translational research and treatments development in advanced pediatric malignancies.