Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO J ; 36(14): 2088-2106, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28645918

RESUMO

Argonaute proteins associate with microRNAs and are key components of gene silencing pathways. With such a pivotal role, these proteins represent ideal targets for regulatory post-translational modifications. Using quantitative mass spectrometry, we find that a C-terminal serine/threonine cluster is phosphorylated at five different residues in human and Caenorhabditis elegans In human, hyper-phosphorylation does not affect microRNA binding, localization, or cleavage activity of Ago2. However, mRNA binding is strongly affected. Strikingly, on Ago2 mutants that cannot bind microRNAs or mRNAs, the cluster remains unphosphorylated indicating a role at late stages of gene silencing. In C. elegans, the phosphorylation of the conserved cluster of ALG-1 is essential for microRNA function in vivo Furthermore, a single point mutation within the cluster is sufficient to phenocopy the loss of its complete phosphorylation. Interestingly, this mutant retains its capacity to produce and bind microRNAs and represses expression when artificially tethered to an mRNA Altogether, our data suggest that the phosphorylation state of the serine/threonine cluster is important for Argonaute-mRNA interactions.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Inativação Gênica , MicroRNAs/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Animais , Proteínas Argonautas/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Fosforilação , Ligação Proteica
2.
Nucleic Acids Res ; 45(18): 10534-10554, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977666

RESUMO

CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.


Assuntos
Autoantígenos/metabolismo , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Linhagem Celular Tumoral , Galinhas , Reparo do DNA , Humanos , Nucleossomos/metabolismo , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 112(38): 11841-5, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351695

RESUMO

During microRNA (miRNA)-guided gene silencing, Argonaute (Ago) proteins interact with a member of the TNRC6/GW protein family. Here we used a short GW protein-derived peptide fused to GST and demonstrate that it binds to Ago proteins with high affinity. This allows for the simultaneous isolation of all Ago protein complexes expressed in diverse species to identify associated proteins, small RNAs, or target mRNAs. We refer to our method as "Ago protein Affinity Purification by Peptides" (Ago-APP). Furthermore, expression of this peptide competes for endogenous TNRC6 proteins, leading to global inhibition of miRNA function in mammalian cells.


Assuntos
Proteínas Argonautas/isolamento & purificação , Cromatografia de Afinidade/métodos , Complexos Multiproteicos/isolamento & purificação , Peptídeos/isolamento & purificação , Sequência de Aminoácidos , Animais , Extratos Celulares , Precipitação Química , Drosophila melanogaster , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Peptídeos/química
4.
Nucleic Acids Res ; 42(7): 4332-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24497194

RESUMO

The heterodimeric complex SPT4/SPT5 is a transcript elongation factor (TEF) that directly interacts with RNA polymerase II (RNAPII) to regulate messenger RNA synthesis in the chromatin context. We provide biochemical evidence that in Arabidopsis, SPT4 occurs in a complex with SPT5, demonstrating that the SPT4/SPT5 complex is conserved in plants. Each subunit is encoded by two genes SPT4-1/2 and SPT5-1/2. A mutant affected in the tissue-specifically expressed SPT5-1 is viable, whereas inactivation of the generally expressed SPT5-2 is homozygous lethal. RNAi-mediated downregulation of SPT4 decreases cell proliferation and causes growth reduction and developmental defects. These plants display especially auxin signalling phenotypes. Consistently, auxin-related genes, most strikingly AUX/IAA genes, are downregulated in SPT4-RNAi plants that exhibit an enhanced auxin response. In Arabidopsis nuclei, SPT5 clearly localizes to the transcriptionally active euchromatin, and essentially co-localizes with transcribing RNAPII. Typical for TEFs, SPT5 is found over the entire transcription unit of RNAPII-transcribed genes. In SPT4-RNAi plants, elevated levels of RNAPII and SPT5 are detected within transcribed regions (including those of downregulated genes), indicating transcript elongation defects in these plants. Therefore, SPT4/SPT5 acts as a TEF in Arabidopsis, regulating transcription during the elongation stage with particular impact on the expression of certain auxin-related genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Eucromatina/química , Fatores de Elongação da Transcrição/genética
5.
Nucleic Acids Res ; 42(1): e2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24106087

RESUMO

Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.


Assuntos
Cromossomos Fúngicos/química , Saccharomyces cerevisiae/genética , Fosfatase Ácida/genética , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Genômica/métodos , Histonas/metabolismo , Espectrometria de Massas , Nucleossomos/química , Regiões Promotoras Genéticas , Proteoma/isolamento & purificação , RNA Ribossômico 5S/química , RNA Ribossômico 5S/ultraestrutura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
6.
Nucleic Acids Res ; 41(2): 1191-210, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23209026

RESUMO

Eukaryotic ribosome biogenesis requires more than 150 auxiliary proteins, which transiently interact with pre-ribosomal particles. Previous studies suggest that several of these biogenesis factors function together as modules. Using a heterologous expression system, we show that the large ribosomal subunit (LSU) biogenesis factor Noc1p of Saccharomyces cerevisiae can simultaneously interact with the LSU biogenesis factor Noc2p and Rrp5p, a factor required for biogenesis of the large and the small ribosomal subunit. Proteome analysis of RNA polymerase-I-associated chromatin and chromatin immunopurification experiments indicated that all members of this protein module and a specific set of LSU biogenesis factors are co-transcriptionally recruited to nascent ribosomal RNA (rRNA) precursors in yeast cells. Further ex vivo analyses showed that all module members predominantly interact with early pre-LSU particles after the initial pre-rRNA processing events have occurred. In yeast strains depleted of Noc1p, Noc2p or Rrp5p, levels of the major LSU pre-rRNAs decreased and the respective other module members were associated with accumulating aberrant rRNA fragments. Therefore, we conclude that the module exhibits several binding interfaces with pre-ribosomes. Taken together, our results suggest a co- and post-transcriptional role of the yeast Rrp5p-Noc1p-Noc2p module in the structural organization of early LSU precursors protecting them from non-productive RNase activity.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica
7.
Cell Physiol Biochem ; 33(3): 692-704, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643085

RESUMO

BACKGROUND: Heart failure (CHF) is characterized by dyspnea and pulmonary changes. The underlying molecular adaptations are unclear, but might provide targets for therapeutic interventions. We therefore conceived a study to determine molecular changes of early pulmonary stress failure in a model of tachycardia-induced heart failure. METHODS: CHF was induced in rabbits by progessive right ventricular pacing (n=6). Invasive blood pressure measurements and echocardiography were repeatedly performed. Untreated animals served as controls (n=6). Pulmonary tissue specimens were subjected to two-dimensional gel electrophoresis, and differentially expressed proteins were identified by mass spectrometry. Selected proteins were validated by Western Blot analysis and localized by immunohistochemical staining. RESULTS: CHF animals were characterized by significantly altered functional, morphological, and hemodynamic parameters. Upon proteomic profiling, a total of 33 proteins was found to be differentially expressed in pulmonary tissue of CHF animals (18 up-regulated, and 15 down-regulated) belonging to 4 functional groups: 1. proteins involved in maintaining cytoarchitectural integrity, 2. plasma proteins indicating impaired alveolar-capillary permeability, 3. proteins with antioxidative properties, and 4. proteins participating in the metabolism of selenium compounds CONCLUSION: Experimental heart failure profoundly alters the pulmonary proteome. Our results supplement the current knowledge of pulmonary stress failure by specifying its molecular fundament.


Assuntos
Insuficiência Cardíaca/metabolismo , Pulmão/metabolismo , Proteoma/metabolismo , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Pulmão/patologia , Coelhos
8.
J Card Fail ; 18(8): 660-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22858083

RESUMO

BACKGROUND/OBJECTIVES: Molecular mechanisms of congestive heart failure as reflected by alterations of protein expression patterns are still incompletely analyzed. We therefore investigated intraventricular (ie, left ventricular congestive heart failure [LV-CHF] vs. LV-control [CTRL], and right ventricular [RV]-CHF vs. RV-CTRL) and interventricular (ie, LV-CHF vs. RV-CHF, and LV-CTRL vs. RV-CTRL) protein expression differences in an animal model. METHODS: The model of rapid ventricular pacing in rabbits was combined with a proteomic approach using 2-dimensional gel electrophoresis. Identification of proteins was done by matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS). RESULTS: Rapid ventricular pacing-induced heart failure was characterized by LV dilatation, dysfunction, and hypotension as well as by increased BNP gene expression. By comparing LV-CHF vs. LV-CTRL, proteins were found to be underexpressed at 3 crucial points of cellular energy metabolism. In RV-CHF vs. RV-CTRL, proteins belonging to respiratory chain complexes were underexpressed, but additionally a disturbance in the nitric oxide-generating enzymatic apparatus was seen. Regarding the interventricular analyses, a stronger expression of energetic pathways was accompanied by an underexpression of contractile and stress response proteins in failing left vs. right ventricles. Finally, significant protein expression differences were found in LV-CTRL vs. RV-CTRL reflecting a higher expression of contractile, stress response, and respiratory chain proteins in LV tissue. CONCLUSIONS: In tachycardia-induced heart failure, significant inter- and intraventricular protein expression patterns were found with a predominance of proteins, which are involved in cellular energy metabolism.


Assuntos
Insuficiência Cardíaca/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteômica , Taquicardia/genética , Análise de Variância , Animais , Estimulação Cardíaca Artificial , Perfilação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Masculino , Miocárdio/ultraestrutura , Óxido Nítrico , Coelhos , Taquicardia/complicações , Disfunção Ventricular Esquerda
9.
Nucleic Acids Res ; 38(9): 3068-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20100801

RESUMO

Formation of eukaryotic ribosomes requires more than 150 biogenesis factors which transiently interact with the nascent ribosomal subunits. Previously, many pre-ribosomal intermediates could be distinguished by their protein composition and rRNA precursor (pre-rRNA) content. We purified complexes of ribosome biogenesis factors from yeast cells in which de novo synthesis of rRNA precursors was down-regulated by genetic means. We compared the protein composition of these largely pre-rRNA free assemblies with the one of analogous pre-ribosomal preparations by semi-quantitative mass spectrometry. The experimental setup minimizes the possibility that the analysed pre-rRNA free protein modules were derived from (partially) disrupted pre-ribosomal particles and provides thereby strong evidence for their pre-ribosome independent existence. In support of the validity of this approach (i) the predicted composition of the analysed protein modules was in agreement with previously described rRNA-free complexes and (ii) in most of the cases we could identify new candidate members of reported protein modules. An unexpected outcome of these analyses was that free large ribosomal subunits are associated with a specific set of ribosome biogenesis factors in cells where neo-production of nascent ribosomes was blocked. The data presented strengthen the idea that assembly of eukaryotic pre-ribosomal particles can result from transient association of distinct building blocks.


Assuntos
Proteínas Fúngicas/análise , Proteínas Ribossômicas/análise , Ribossomos/química , Proteínas Fúngicas/metabolismo , Precursores de RNA/metabolismo , RNA Fúngico/biossíntese , RNA Fúngico/metabolismo , RNA Ribossômico/biossíntese , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Leveduras/genética
10.
Arch Microbiol ; 190(3): 379-94, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18584152

RESUMO

Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion.


Assuntos
Proteínas Arqueais/química , Desulfurococcaceae/química , Proteoma/química , Biologia Computacional , Citosol/química , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
11.
Curr Biol ; 28(10): 1548-1560.e5, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29731305

RESUMO

Embryogenesis in flowering plants is initiated by an asymmetric zygote division, generating two daughter cells that are the precursors of different cell lineages. Little is known about the molecular players regulating activation and progression of zygote development, establishment of asymmetry, and the plant-specific process of cell-plate formation. Here, we report the function of the ubiquitin-like modifier DiSUMO-LIKE (DSUL) for early embryo development in maize. Introducing a DSUL-RNAi construct by sperm cells affects cytokinesis generating non-separated zygotic daughter nuclei or multinucleate embryonic cells lacking cell plates. DSUL accumulates in the cytoplasm partly in granules, in the nucleus, as well as in the cell division zone. The enzymatic DSULyation cascade involves maturation and the same enzymatic machinery for activation and conjugation as was previously shown for SUMO1. Identification of DSUL targets suggests predominant roles of DSULylation in regulation of cytoplasmic RNA metabolism as well as in cell-cycle progression and cell-plate formation. A comparison of DSUL and SUMO1 localization during the cell cycle and of their substrates indicates strong functional diversification between these two SUMO family modifiers.


Assuntos
Ciclo Celular , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/genética , Sementes/embriologia , Zea mays/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sementes/genética , Zea mays/embriologia , Zea mays/genética
12.
PLoS One ; 11(8): e0161165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518285

RESUMO

The members of the Argonaute (AGO) protein family are key players in miRNA-guided gene silencing. They enable the interaction between small RNAs and their respective target mRNA(s) and support the catalytic destruction of the gene transcript or recruit additional proteins for downstream gene silencing. The human AGO family consists of four AGO proteins (AGO1-AGO4), but only AGO2 harbors nuclease activity. In this study, we characterized the expression of the four AGO proteins in cancer cell lines and normal tissues with a new mass spectrometry approach called AGO-APP (AGO Affinity Purification by Peptides). In all analyzed normal tissues, AGO1 and AGO2 were most prominent, but marked tissue-specific differences were identified. Furthermore, considerable changes during development were observed by comparing fetal and adult tissues. We also identified decreased overall AGO expression in melanoma derived cell lines compared to other tumor cell lines and normal tissues, with the largest differences in AGO2 expression. The experiments described in this study suggest that reduced amounts of AGO proteins, as key players in miRNA processing, have impact on several cellular processes. Deregulated miRNA expression has been attributed to chromosomal aberrations, promoter regulation and it is known to have a major impact on tumor development and progression. Our findings will further increase our basic understanding of the molecular basis of miRNA processing and its relevance for disease.


Assuntos
Proteínas Argonautas/metabolismo , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Proteínas Argonautas/genética , Western Blotting , Células Cultivadas , Humanos , Melanoma/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Structure ; 24(7): 1178-91, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27320836

RESUMO

Diatoms are eukaryotic unicellular algae characterized by silica cell walls and associated with three unique protein families, the pleuralins, frustulins, and silaffins. The NMR structure of the PSCD4 domain of pleuralin-1 from Cylindrotheca fusiformis contains only three short helical elements and is stabilized by five unique disulfide bridges. PSCD4 contains two binding sites for Ca(2+) ions with millimolar affinity. NMR-based interaction studies show an interaction of the domain with native silaffin-1A as well as with α-frustulins. The interaction sites of the two proteins mapped on the PSCD4 structure are contiguous and show only a small overlap. A plausible functional role of pleuralin could be to bind simultaneously silaffin-1A located inside the cell wall and α-frustulin coating the cell wall, thus connecting the interfaces between hypotheca and epitheca at the girdle bands. Restrained molecular dynamics calculations suggest a bead-chain-like structure of the central part of pleuralin-1.


Assuntos
Parede Celular/química , Diatomáceas/química , Peptídeos/química , Dióxido de Silício/metabolismo , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos
14.
Sci Rep ; 6: 34697, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703264

RESUMO

Males of all species of the parasitic wasp genus Nasonia use (4R,5S)-5-hydroxy-4-decanolide (RS) as component of their sex pheromone while only N. vitripennis (Nv), employs additionally (4R,5R)-5-hydroxy-4-decanolide (RR). Three genes coding for the NAD+-dependent short-chain dehydrogenases/reductases (SDRs) NV10127, NV10128, and NV10129 are linked to the ability of Nv to produce RR. Here we show by assaying recombinant enzymes that SDRs from both Nv and N. giraulti (Ng), the latter a species with only RS in the pheromone, epimerise RS into RR and vice versa with (4R)-5-oxo-4-decanolide as an intermediate. Nv-derived SDR orthologues generally had higher epimerisation rates, which were also influenced by NAD+ availability. Semiquantitative protein analyses of the pheromone glands by tandem mass spectrometry revealed that NV10127 as well as NV10128 and/or NV10129 were more abundant in Nv compared to Ng. We conclude that the interplay of differential expression patterns and SDR epimerisation rates on the ancestral pheromone component RS accounts for the evolution of a novel pheromone phenotype in Nv.


Assuntos
Lactonas/química , Oxirredutases/genética , Feromônios/metabolismo , Vespas/metabolismo , Animais , Evolução Molecular , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Oxirredutases/metabolismo , Feromônios/química , Proteínas Recombinantes/metabolismo , Comportamento Sexual Animal , Espectrometria de Massas em Tandem , Vespas/química , Vespas/genética
15.
Matrix Biol ; 50: 53-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690653

RESUMO

The extracellular matrix protein fibulin-4 has been shown to be indispensable for elastic fiber assembly, but there is also evidence from human mutations that it is involved in controlling skeletal development and bone stability. Fibulin-4 mutations were identified in patients suffering from vascular abnormality and/or cutis laxa, and some of these patients exhibited bone fragility, arachnodactyly and joint laxity. In order to elucidate the role of fibulin-4 in bone structure and skeletal development, we analyzed structural changes in skeletal tissues of Fbln4(-/-) mice. Immunostaining confirmed that fibulin-4 is highly expressed in cartilage, bone, ligaments and tendons. No morphological abnormalities were found in the skeleton of Fbln4(-/-) mice as compared to wild type littermates except forelimb contractures as well as unusually thick collagen fibrils. Furthermore, fibulin-4 deficiency caused enhanced susceptibility of bone collagen for acid extraction, consistent with significantly reduced lysylpyridinoline and hydroxylysylpyridinoline cross-links in bone. In accordance with that, the amount of lysyl oxidase in long bones and calvaria was strongly decreased and proteolytic activation of lysyl oxidase was reduced in fibulin-4 deficient osteoblasts, while addition of recombinant fibulin-4 rescued the activation. The finding suggested that fibulin-4 is important for the proteolytic activation of lysyl oxidase which has a pivotal role in cross-linking of collagen and elastin.


Assuntos
Osso e Ossos/citologia , Colágeno/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Desenvolvimento Ósseo , Osso e Ossos/metabolismo , Células Cultivadas , Elastina/metabolismo , Humanos , Camundongos , Mutação , Distribuição Tecidual
16.
Matrix Biol ; 56: 132-149, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27339457

RESUMO

Fibulin-4 is a 60kDa calcium binding glycoprotein that has an important role in development and integrity of extracellular matrices. It interacts with elastin, fibrillin-1 and collagen IV as well as with lysyl oxidases and is involved in elastogenesis and cross-link formation. To date, several mutations in the fibulin-4 gene (FBLN4/EFEMP2) are known in patients whose major symptoms are vascular deformities, aneurysm, cutis laxa, joint laxity, or arachnodactyly. The pathogenetic mechanisms how these mutations translate into the clinical phenotype are, however, poorly understood. In order to elucidate these mechanisms, we expressed fibulin-4 mutants recombinantly in HEK293 cells, purified the proteins in native forms and analyzed alterations in protein synthesis, secretion, matrix assembly, and interaction with other proteins in relation to wild type fibulin-4. Our studies show that different mutations affect these properties in multiple ways, resulting in fibulin-4 deficiency and/or impaired ability to form elastic fibers. The substitutions E126K and C267Y impaired secretion of the protein, but not mRNA synthesis. Furthermore, the E126K mutant showed less resistance to proteases, reduced binding to collagen IV and fibrillin-1, as well as to LTBP1s and LTBP4s. The A397T mutation introduced an extra O-glycosylation site and deleted binding to LTBP1s. We show that fibulin-4 binds stronger than fibulin-3 and -5 to LTBP1s, 3, and 4s, and to the lysyl oxidases LOX and LOXL1; the binding of fibulin-4 to the LOX propeptide was strongly reduced by the mutation E57K. These findings show that different mutations in the fibulin-4 gene result in different molecular defects affecting secretion rates, protein stability, LOX-induced cross-linking, or binding to other ECM components and molecules of the TGF-ß pathway, and thus illustrate the complex role of fibulin-4 in connective tissue assembly.


Assuntos
Cútis Laxa/genética , Proteínas da Matriz Extracelular/genética , Animais , Sequência de Carboidratos , Cútis Laxa/metabolismo , Cútis Laxa/patologia , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/isolamento & purificação , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Estudos de Associação Genética , Glicosilação , Células HEK293 , Humanos , Camundongos Transgênicos , Vison , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteína-Lisina 6-Oxidase/metabolismo , Proteólise , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
17.
Matrix Biol ; 24(5): 326-32, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15979864

RESUMO

A simplification of the laminin nomenclature is presented. Laminins are multidomain heterotrimers composed of alpha, beta and gamma chains. Previously, laminin trimers were numbered with Arabic numerals in the order discovered, that is laminins-1 to -5. We introduce a new identification system for a trimer using three Arabic numerals, based on the alpha, beta and gamma chain numbers. For example, the laminin with the chain composition alpha5beta1gamma1 is termed laminin-511, and not laminin-10. The current practice is also to mix two overlapping domain and module nomenclatures. Instead of the older Roman numeral nomenclature and mixed nomenclature, all modules are now called domains. Some domains are renamed or renumbered. Laminin epidermal growth factor-like (LE) domains are renumbered starting at the N-termini, to be consistent with general protein nomenclature. Domain IVb of alpha chains is named laminin 4a (L4a), domain IVa of alpha chains is named L4b, domain IV of gamma chains is named L4, and domain IV of beta chains is named laminin four (LF). The two coiled-coil domains I and II are now considered one laminin coiled-coil domain (LCC). The interruption in the coiled-coil of beta chains is named laminin beta-knob (Lbeta) domain. The chain origin of a domain is specified by the chain nomenclature, such as alpha1L4a. The abbreviation LM is suggested for laminin. Otherwise, the nomenclature remains unaltered.


Assuntos
Laminina/química , Laminina/classificação , Terminologia como Assunto , Animais , Humanos
18.
Matrix Biol ; 22(4): 351-61, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12935819

RESUMO

To identify the laminin isoforms of the basement membranes that could be implicated in the extravasation process of neoplastic lymphocytes, a number of purified laminins and one native renal laminin complex were comparatively investigated for their ability to promote migration of neoplastic lymphocytes in vitro. The identity/composition of a human placental laminin complex was asserted by combining immunochemical assays, sequence determination of tryptic peptides, and ultrastructural analysis to be composed predominantly of laminin-10 in which the coiled-coil C-terminal regions and the G globular domain of the alpha5 chain were preserved intact despite the enzymatic treatment used for its isolation. Lymphoma and leukemic cell lines failed to migrate towards laminin-4, -9, -11, moved poorly in response to laminin-1, -2/4, -5 and the renal laminin complex, but markedly locomoted towards the subendothelial laminin-8 and -10. The motility-promoting interaction with these latter laminins was interchangeably mediated by the alpha3beta1 and alpha6beta1 integrins. Lymphocyte locomotion on laminins assayed in the presence of cytokines was either reduced or enhanced suggesting that local cytokine milieu could further influence motility response.


Assuntos
Movimento Celular , Laminina/metabolismo , Leucemia/patologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Interleucinas/metabolismo , Interleucinas/farmacologia , Células Jurkat , Laminina/isolamento & purificação , Linfócitos/patologia , Placenta/química , Especificidade por Substrato , Linfócitos T/patologia
19.
Methods Mol Med ; 94: 269-97, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14959836

RESUMO

The primary structure of proteins is nowadays determined by DNA sequencing, and a variety of genomes are already known. Nevertheless, protein sequencing/identification is still indispensable to analyze the proteins expressed in a cell, to identify specific proteins, and to determine posttranslational modifications. Proteins of interest are typically available in low microgram amounts or even less. The separation method of choice is gel electrophoresis, followed by blotting to PVDF membrane for N-terminal sequencing or by in-gel digestion to generate peptides that can be separated by HPLC. Structural analysis can be done by Edman degradation or mass spectrometry (MS). Edman degradation is the older method based on successive removal of N-terminal amino acids by chemical methods. Sequencing of a peptide requires many hours, the sensitivity is in the range of 2-5 pmol of a purified peptide. Nevertheless, Edman degradation is still the workhorse in the lab for routine work such as identification of blotted proteins. It is also the method of choice for sequencing unknown proteins/ peptides and modified peptides. MS has routinely been used with peptides in the range of 100 fmol or even less. In contrast to Edman degradation, complex mixtures such as tryptic digests can be analyzed, making HPLC separation of peptides unnecessary. MS is a very fast method that can be automated. It is the method of choice for sensitive analysis and large-scale applications (proteomics). Two different ionization methods are commonly used to generate peptide/protein ions for MS analysis. These are MALDI (matrix assisted laser desorption and ionization) and ESI (electrospray ionization). They can be combined with a variety of mass analyzers (TOF, quadrupole, ion trap). Proteins are either identified by searching databases with the masses of proteolytic peptides (peptide mass fingerprinting) or using fragmentation data (raw MS/MS spectra or sequence tags). This approach requires that the protein is known and listed in the database. De novo sequencing by MS of peptides is possible, but very time consuming and not a routine application, in contrast to Edman degradation. The aim of this chapter is to introduce to basic theory, practical applications and limitations of the various methods, to enable the non-expert scientist to decide which method is best suited for his project and which kind of sample preparation is necessary.


Assuntos
Peptídeos/química , Proteínas/química , Análise de Sequência de Proteína/métodos , Cromatografia Líquida de Alta Pressão , Bases de Dados de Proteínas , Eletroforese , Immunoblotting , Indicadores e Reagentes , Estrutura Molecular , Fragmentos de Peptídeos/isolamento & purificação , Mapeamento de Peptídeos , Peptídeos/isolamento & purificação , Polivinil , Proteínas/isolamento & purificação , Sitios de Sequências Rotuladas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Z Naturforsch C J Biosci ; 57(5-6): 522-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12132696

RESUMO

Some bacterial genomes were found to contain genes encoding putative proteins with considerable sequence homology to cyanophycin synthetase CphA of cyanobacteria. Such a gene from the Gram-positive, spore-forming anaerobe Desulfitobacterium hafniense was cloned. Expression in Escherichia coli resulted in the formation of a polydispers copolymer of aspartic acid and arginine, with a minor amount of lysine, of about 30 kDa molecular mass. In contrast to cyanophycin, this polymer was water-soluble. The structure of the polymer formed by the synthetase from Desulfitobacterium hafniense was studied by enzymatic degradation with the cyanophycin-specific hydrolase cyanophycinase, and by chemical and mass-spectroscopic analyses. Despite of the differences in solubility, indicating that both polymers cannot be completely identical, the chemical structure was found to be very similar to that of cyanophycin. The results suggest that the use of cyanophycin-like polymers as a nitrogen-rich reserve material is not restricted to cyanobacteria, and that such polymers may not necessarily be stored in granules.


Assuntos
Proteínas de Bactérias , Cianobactérias/enzimologia , Peptídeo Sintases/metabolismo , Peptococcaceae/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeo Sintases/química , Peptídeo Sintases/genética , Peptococcaceae/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA