Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(25)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35366652

RESUMO

We investigate the density and optical responses of a linear triple component fermionic system in both non-interacting and interacting regimes by computing its dynamical polarization function, random phase approximation dielectric function, plasmon mode and long wavelength optical conductivity and compare the results with those of Weyl fermions and three-dimensional free electron gas. Linear triple component fermions are pseudospin-1 generalization of Weyl fermions, consisting of two linearly dispersive bands and a flat band. The presence of flat band brings about notable modifications in the response properties with respect to Weyl fermions such as induction of a new region in the particle-hole continuum, increased static polarization, reduced plasmon gap, shift in absorption edge, enhanced rate of increase in energy absorption with frequency and highly suppressed intercone transitions in the long wavelength limit. The plasmon dispersion follows the usualω∼ω0+ω1q2nature as observed in other three-dimensional systems.

2.
J Phys Condens Matter ; 34(15)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35045401

RESUMO

Triple-component fermions (TCFs) are pseudospin-1 quasiparticles hosted by certain three-band semimetals in the vicinity of their band-touching nodes (2019Phys. Rev.B100235201). The excitations comprise of a flat band and two dispersive bands. The energies of the dispersive bands areE±=±αn2k⊥2n+vz2kz2withk⊥=kx2+ky2andn= 1, 2, 3. In this work, we obtain the exact expression of Berry curvature, approximate form of density of states and Fermi energy as a function of carrier density for any value ofn. In particular, we study the Berry curvature induced electrical and thermal magnetotransport properties of quadratic (n= 2) TCFs using semiclassical Boltzmann transport formalism. Since the energy spectrum is anisotropic, we consider two orientations of magnetic field (B): (i)Bapplied in thex-yplane and (ii)Bapplied in thex-zplane. For both the orientations, the longitudinal and planar magnetoelectric/magnetothermal conductivities show the usual quadratic-Bdependence and oscillatory behavior with respect to the angle between the applied electric field/temperature gradient and magnetic field as observed in other topological semimetals. However, the out-of-plane magnetoconductivity has an oscillatory dependence on angle between the applied fields for the second orientation but is angle-independent for the first one. We observe large differences in the magnitudes of transport coefficients for the two orientations at a given Fermi energy. A noteworthy feature of quadratic TCFs which is typically absent in conventional systems is that certain transport coefficients and their ratios are independent of Fermi energy within the low-energy model.

3.
J Phys Condens Matter ; 34(2)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34649225

RESUMO

We study the magnetoelectric and magnetothermal transport properties of noncentrosymmetric metals using semiclassical Boltzmann transport formalism by incorporating the effects of Berry curvature (BC) and orbital magnetic moment (OMM). These effects impart quadratic-Bdependence to the magnetoelectric and magnetothermal conductivities, leading to intriguing phenomena such as planar Hall effect, negative magnetoresistance (MR), planar Nernst effect and negative Seebeck effect. The transport coefficients associated with these effects show the usual oscillatory behavior with respect to the angle between the applied electric field and magnetic field. The bands of noncentrosymmetric metals are split by Rashba spin-orbit coupling except at a band touching point (BTP). For Fermi energy below (above) the BTP, giant (diminished) negative MR is observed. This difference in the nature of MR is related to the magnitudes of the velocities, BC and OMM on the respective Fermi surfaces, where the OMM plays the dominant role. The absolute MR and planar Hall conductivity show a decreasing (increasing) trend with Rashba coupling parameter for Fermi energy below (above) the BTP.

4.
J Phys Condens Matter ; 33(22)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602888

RESUMO

We study a systematic evolution of the topological properties of a Chern insulator upon smooth variation of a hopping parameter (t1) of the electrons among a pair of nearest neighbour sites on a honeycomb lattice, while keeping the other two hopping terms (t) fixed. In the absence of a Haldane flux, the tuning oft1results in gradual shifting of the Dirac cones which eventually merge into one at theMpoint in the Brillouin zone (BZ) att1= 2twith a gapless semi-Dirac dispersion at low energies. In the presence of a Haldane flux, the system becomes a Chern insulator fort1< 2t, but turns gapless att1= 2twith the semi-Dirac dispersion being transformed to an anisotropic Dirac one. The spectrum eventually gaps out and transforms into a trivial insulator fort1> 2t. The Chern number phase diagram obtained via integrating the Berry curvature over the BZ shows a gradual shrinking of the 'topological' lobes, and vanishes just beyondt1= 2t, where a small but a finite Berry curvature still exists. Thus, there is a phase transition from a topological phase to a trivial phase across the semi-Dirac point (t1= 2t). The vanishing of the anomalous Hall conductivity plateau and the merger of the chiral edge states with the bulk bands near theMpoint provide robust support of the observed phase transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA