Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12343, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704042

RESUMO

The prediction of non-trivial topological electronic states in half-Heusler compounds makes these materials good candidates for discovering new physics and devices as half-Heusler phases harbour a variety of electronic ground states, including superconductivity, antiferromagnetism, and heavy-fermion behaviour. Here, we report a systematic studies of electronic properties of a superconducting half-Heusler compound YPtBi, in its normal state, investigated using angle-resolved photoemission spectroscopy. Our data reveal the presence of a Dirac state at the [Formula: see text] point of the Brillouin zone at 500 meV below the Fermi level. We observe the presence of multiple Fermi surface pockets, including two concentric hexagonal and six half-oval shaped pockets at the [Formula: see text] and K points of the Brillouin zone, respectively. Furthermore, our measurements show Rashba-split bands and multiple surface states crossing the Fermi level, this is also supported by the first-principles calculations. Our findings of a Dirac state in YPtBi contribute to the establishing of half-Heusler compounds as a potential platform for novel topological phases.

2.
Sci Rep ; 10(1): 2776, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066748

RESUMO

The topological nodal-line semimetal (TNS) is a unique class of materials with a one dimensional line node accompanied by a nearly dispersionless two-dimensional surface state. However, a direct observation of the so called drumhead surface state within current nodal-line materials is still elusive. Here, using high-resolution angle-resolved photoemission spectroscopy (ARPES) along with first-principles calculations, we report the observation of a topological nodal-loop (TNL) in SrAs3, whereas CaAs3 exhibits a topologically trivial state. Our data reveal that surface projections of the bulk nodal-points are connected by clear drumhead surface states in SrAs3. Furthermore, our magneto-transport and magnetization data clearly suggest the presence (absence) of surface states in SrAs3 (CaAs3). Notably, the observed topological states in SrAs3 are well separated from other bands in the vicinity of the Fermi level. RAs3 where R = Ca, Sr, thus, offers a unique opportunity to realize an archetype nodal-loop semimetal and establish a platform for obtaining a deeper understanding of the quantum phase transitions.

3.
Rev Sci Instrum ; 91(1): 013102, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012559

RESUMO

Characterizing and controlling electronic properties of quantum materials require direct measurements of nonequilibrium electronic band structures over large regions of momentum space. Here, we demonstrate an experimental apparatus for time- and angle-resolved photoemission spectroscopy using high-order harmonic probe pulses generated by a robust, moderately high power (20 W) Yb:KGW amplifier with a tunable repetition rate between 50 and 150 kHz. By driving high-order harmonic generation (HHG) with the second harmonic of the fundamental 1025 nm laser pulses, we show that single-harmonic probe pulses at 21.8 eV photon energy can be effectively isolated without the use of a monochromator. The on-target photon flux can reach 5 × 1010 photons/s at 50 kHz, and the time resolution is measured to be 320 fs. The relatively long pulse duration of the Yb-driven HHG source allows us to reach an excellent energy resolution of 21.5 meV, which is achieved by suppressing the space-charge broadening using a low photon flux of 1.5 × 108 photons/s at a higher repetition rate of 150 kHz. The capabilities of the setup are demonstrated through measurements in the topological semimetal ZrSiS and the topological insulator Sb2-xGdxTe3.

4.
Sci Rep ; 10(1): 12961, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737330

RESUMO

The rare-earth monopnictide family is attracting an intense current interest driven by its unusual extreme magnetoresistance (XMR) property and the potential presence of topologically non-trivial surface states. The experimental observation of non-trivial surface states in this family of materials are not ubiquitous. Here, using high-resolution angle-resolved photoemission spectroscopy, magnetotransport, and parallel first-principles modeling, we examine the nature of electronic states in HoSb. Although we find the presence of bulk band gaps at the [Formula: see text] and X-symmetry points of the Brillouin zone, we do not find these gaps to exhibit band inversion so that HoSb does not host a Dirac semimetal state. Our magnetotransport measurements indicate that HoSb can be characterized as a correlated nearly-complete electron-hole-compensated semimetal. Our analysis reveals that the nearly perfect electron-hole compensation could drive the appearance of non-saturating XMR effect in HoSb.

5.
Sci Rep ; 8(1): 13283, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185891

RESUMO

Topological Dirac semimetals with accidental band touching between conduction and valence bands protected by time reversal and inversion symmetry are at the frontier of modern condensed matter research. A majority of discovered topological semimetals are nonmagnetic and conserve time reversal symmetry. Here we report the experimental discovery of an antiferromagnetic topological nodal-line semimetallic state in GdSbTe using angle-resolved photoemission spectroscopy. Our systematic study reveals the detailed electronic structure of the paramagnetic state of antiferromagnetic GdSbTe. We observe the presence of multiple Fermi surface pockets including a diamond-shape, and small circular pockets around the zone center and high symmetry X points of the Brillouin zone (BZ), respectively. Furthermore, we observe the presence of a Dirac-like state at the X point of the BZ and the effect of magnetism along the nodal-line direction. Interestingly, our experimental data show a robust  Dirac-like state both below and above the magnetic transition temperature (TN = 13 K). Having a relatively high transition temperature, GdSbTe provides an archetypical platform to study the interaction between magnetism and topological states of matter.

6.
Nat Commun ; 9(1): 3002, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068909

RESUMO

Among the quantum materials that have recently gained interest are the topological insulators, wherein symmetry-protected surface states cross in reciprocal space, and the Dirac nodal-line semimetals, where bulk bands touch along a line in k-space. However, the existence of multiple fermion phases in a single material has not been verified yet. Using angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations, we systematically study the metallic material Hf2Te2P and discover properties, which are unique in a single topological quantum material. We experimentally observe weak topological insulator surface states and our calculations suggest additional strong topological insulator surface states. Our first-principles calculations reveal a one-dimensional Dirac crossing-the surface Dirac-node arc-along a high-symmetry direction which is confirmed by our ARPES measurements. This novel state originates from the surface bands of a weak topological insulator and is therefore distinct from the well-known Fermi arcs in semimetals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA