Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 15(2): 1669-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353710

RESUMO

In the past years, lots of research works were dedicated to nanowires and their integration into functional devices. However, despite the great potential of such materials, no device based on nanowires has been transferred in all-day-life. In fact, the vertical device integration is slowed down by the difficulty to contact easily the top electrode. With this work, we present a simple, elegant and versatile process for creating a top electrode contact on nanowires: a carbon nanotube sheet is suspended at the top of the nanowire field. The proof of concept is made through the realization of photovoltaic devices composed of an assembly of vertical PN-junctions based on silicon nanowires. For an illumination density of 100 mW . cm-2, our devices exhibit short circuit current density as high as 15 mA . cm-2. Due to the numerous advantages of the carbon nanotube sheets as top electrode, such as transparency, porosity, good mechanical performance and no need to embed nanowires, such simple and elegant technology should definitely find developments in every field of nanotechnology.

2.
Nanoscale Res Lett ; 6(1): 187, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21711709

RESUMO

The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

3.
Nano Lett ; 9(2): 525-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19159318

RESUMO

Elastic modulus and fracture strength of vertically aligned Si [111] nanowires (ø = 100-700 nm) in an as-grown state have been measured using a new, multipoint bending protocol in an atomic force microscope. All wires showed linear elastic behavior, spring constants which scale with (length)(3), and brittle failure at the wire-substrate junction. The "effective" Young's modulus increased slightly (100 --> 160-180 GPa) as wire diameter decreased, but fracture strength increased by 2-3 orders of magnitude (MPa --> GPa). These results indicate that vapor-liquid-solid grown wires are relatively free of extended volume defects and that fracture strength is likely controlled by twinning and interfacial effects at the wire foot. Small wires (100 nm) grown with a colloidal catalyst were the best performers with high modulus ( approximately 180 GPa) and fracture stress >1 GPa.

4.
Nano Lett ; 8(5): 1544-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18422363

RESUMO

Silicon nanowires (NW) were grown by the vapor-liquid-solid mechanism using gold as the catalyst and silane as the precursor. Gold from the catalyst particle can diffuse over the wire sidewalls, resulting in gold clusters decorating the wire sidewalls. The presence or absence of gold clusters was observed either by high angle annular darkfield scanning transmission electron microscopy images or by scanning electron microscopy. We find that the gold surface diffusion can be controlled by two growth parameters, the silane partial pressure and the growth temperature, and that the wire diameter also affects gold diffusion. Gold clusters are not present on the NW side walls for high silane partial pressure, low temperature, and small NW diameters. The absence or presence of gold on the NW sidewall has an effect on the sidewall morphology. Different models are qualitatively discussed. The main physical effect governing gold diffusion seems to be the adsorption of silane on the NW sidewalls.


Assuntos
Cristalização/métodos , Modelos Químicos , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Silanos/química , Silício/química , Adsorção , Simulação por Computador , Difusão , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA