Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(7): 9352-9362, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142505

RESUMO

Herein, we subject formamidinium lead iodide films to oxygen-containing gases (flowing O2 or free diffusion of lab atmosphere), inert gases (flowing He, Ar, or N2), and vacuum. Our films are irradiated by Cu Kα X-rays and held at 75 °C while X-ray diffraction is recorded. Under all gas conditions, we observe a reproducible 1.1 ± 0.5 Å3 perovskite lattice contraction from an initial unit cell volume of 256.5 ± 0.8 Å3 concurrent with continuous perovskite loss and lead iodide growth. Oxygen-containing gases increase the reaction rates without materially altering perovskite structural changes. Under the same temperature and irradiation conditions in vacuo, a self-healing reaction is observed, exhibited by a reproducible (0.9 ± 0.3 Å3) lattice expansion and stabilization of the perovskite. Interactions between the perovskite, defects, and minority phases are simulated by generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) density functional theory. Lattice contraction indicates an increase in the concentration of Schottky defects─pairs of formamidinium and iodine vacancies. Under irradiation in every atmospheric condition, a solid solution of Schottky defects with a concentration of several percent diffuses and precipitates forming lead iodide and consuming the defects. In the presence of ionized gases, this framework is modified to include the continual loss of formamidinium and iodine ions from the perovskite forming Schottky defects.

2.
ACS Appl Mater Interfaces ; 3(7): 2440-4, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21608995

RESUMO

In this work, "isobutrin", an ecofriendly sensitizer that is extracted from Butea monosperma (commonly known as "Flame of the Forest") flowers, is introduced. It is a bright yellow pigment belonging to the chalcone class and is examined as a sensitizer for optoelectronic applications. It is observed that chelation of this dye with Ti ions results into a strong dye-TiO(2) charge transfer (DTCT) band in the visible region. This Ti-Isobutrin chelate is stable, irreversible and its formation is studied using Benesi-Hildebrand plot. The locations of HOMO-LUMO states of the Ti-isobutrin chelate and the corresponding band alignment with TiO(2) are obtained. Also, a thermal stability test revealed that isobutrin is stable above 100 °C.


Assuntos
Butea/química , Chalconas/química , Quelantes/química , Eletrônica
3.
ACS Appl Mater Interfaces ; 1(9): 2030-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20355829

RESUMO

A 50% enhancement in the conversion efficiency (4.9-7.37%) is realized in dye-sensitized solar cells using hydrothermally synthesized TiO(2)-multiwalled carbon nanotube (MWCNT) nanocomposites as compared to hydrothermally synthesized TiO(2) without MWCNT and Degussa P25. Several characterizations have been employed to reveal the nature of the modification imparted to the MWCNTs under hydrothermal processing conditions and the resulting TiO(2)-MWCNT conjugation through -COOH groups. Efficient charge transfer in the nanocomposite and efficient electron transport by MWCNT (significantly higher incident-photon-to-current conversion efficiency) are suggested to be the possible reasons for the enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA