Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23522, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445789

RESUMO

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.


Assuntos
Proteínas de Transporte , Retina , Epitélio Pigmentado da Retina , Animais , Camundongos , Retinoides , Apolipoproteínas B/genética , Homeostase
2.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047689

RESUMO

LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.


Assuntos
Proteínas Associadas aos Microtúbulos , Transcriptoma , Animais , Masculino , Camundongos , Autofagia/genética , Inflamação/genética , Inflamação/metabolismo , Lipídeos , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose/genética , Epitélio Pigmentado da Retina/metabolismo
3.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071220

RESUMO

Visual function depends on the intimate structural, functional and metabolic interactions between the retinal pigment epithelium (RPE) and the neural retina. The daily phagocytosis of the photoreceptor outer segment tips by the overlaying RPE provides essential nutrients for the RPE itself and photoreceptors through intricate metabolic synergy. Age-related retinal changes are often characterized by metabolic dysregulation contributing to increased lipid accumulation and peroxidation as well as the release of proinflammatory cytokines. LGM2605 is a synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant and anti-inflammatory properties demonstrated in diverse in vitro and in vivo inflammatory disease models. In these studies, we tested the hypothesis that LGM2605 may be an attractive small-scale therapeutic that protects RPE against inflammation and restores its metabolic capacity under lipid overload. Using an in vitro model in which loss of the autophagy protein, LC3B, results in defective phagosome degradation and metabolic dysregulation, we show that lipid overload results in increased gasdermin cleavage, IL-1 ß release, lipid accumulation and decreased oxidative capacity. The addition of LGM2605 resulted in enhanced mitochondrial capacity, decreased lipid accumulation and amelioration of IL-1 ß release in a model of defective lipid homeostasis. Collectively, these studies suggest that lipid overload decreases mitochondrial function and increases the inflammatory response, with LGM2605 acting as a protective agent.


Assuntos
Lignanas/metabolismo , Metabolismo dos Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Antioxidantes/metabolismo , Autofagia , Butileno Glicóis/farmacologia , Linhagem Celular , Citocinas , Expressão Gênica , Glucosídeos/farmacologia , Humanos , Inflamação/metabolismo , Lignanas/química , Lipídeos , Mitocôndrias/metabolismo , Oxirredução , Fagocitose , Fagossomos/metabolismo , Pigmentos da Retina/genética
4.
Cell Microbiol ; 21(3): e12967, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30329215

RESUMO

Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin αL /ß2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic αL domain and a yellow fluorescent protein-tagged ß2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both αL and ß2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the αL and ß2 subunits (Kd  = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin αM , αX , and ß3 subunits (Kd  = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of αL and ß2 show that LtxA binds membrane-proximal domain of αL and intermediate domain of ß2 .


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Exotoxinas/metabolismo , Interações Hospedeiro-Patógeno , Imunossupressores/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Células Jurkat , Microscopia de Fluorescência , Ligação Proteica
5.
Am J Physiol Cell Physiol ; 317(6): C1194-C1204, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577510

RESUMO

The retinal pigment epithelium (RPE) supports the outer retina through essential roles in the retinoid cycle, nutrient supply, ion exchange, and waste removal. Each day the RPE removes the oldest ~10% of photoreceptor outer segment (OS) disk membranes through phagocytic uptake, which peaks following light onset. Impaired degradation of phagocytosed OS material by the RPE can lead to toxic accumulation of lipids, oxidative tissue damage, inflammation, and cell death. OSs are rich in very long chain fatty acids, which are preferentially catabolized in peroxisomes. Despite the importance of lipid degradation in RPE function, the regulation of peroxisome number and activity relative to diurnal OS ingestion is relatively unexplored. Using immunohistochemistry, immunoblot analysis, and catalase activity assays, we investigated peroxisome abundance and activity at 6 AM, 7 AM (light onset), 8 AM, and 3 PM, in wild-type (WT) mice and mice lacking microtubule-associated protein 1 light chain 3B (Lc3b), which have impaired phagosome degradation. We found that catalase activity, but not the amount of catalase protein, is 50% higher in the morning compared with 3 PM, in RPE of WT, but not Lc3b-/-, mice. Surprisingly, we found that peroxisome abundance was stable during the day in RPE of WT mice; however, numbers were elevated overall in Lc3b-/- mice, implicating LC3B in autophagic organelle turnover in RPE. Our data suggest that RPE peroxisome function is regulated in coordination with phagocytosis, possibly through direct enzyme regulation, and may serve to prepare RPE peroxisomes for daily surges in ingested lipid-rich OS.


Assuntos
Autofagia/efeitos da radiação , Ritmo Circadiano/genética , Proteínas Associadas aos Microtúbulos/genética , Peroxissomos/efeitos da radiação , Fagocitose/efeitos da radiação , Epitélio Pigmentado da Retina/efeitos da radiação , Animais , Autofagia/genética , Catalase/genética , Catalase/metabolismo , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Luz , Transdução de Sinal Luminoso , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Oxirredução , Peroxissomos/metabolismo , Fagocitose/genética , Epitélio Pigmentado da Retina/metabolismo
6.
J Biol Chem ; 292(19): 8038-8047, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28302729

RESUMO

Daily, the retinal pigment epithelium (RPE) ingests a bolus of lipid and protein in the form of phagocytized photoreceptor outer segments (OS). The RPE, like the liver, expresses enzymes required for fatty acid oxidation and ketogenesis. This suggests that these pathways play a role in the disposal of lipids from ingested OS, as well as providing a mechanism for recycling metabolic intermediates back to the outer retina. In this study, we examined whether OS phagocytosis was linked to ketogenesis. We found increased levels of ß-hydroxybutyrate (ß-HB) in the apical medium following ingestion of OS by human fetal RPE and ARPE19 cells cultured on Transwell inserts. No increase in ketogenesis was observed following ingestion of oxidized OS or latex beads. Our studies further defined the connection between OS phagocytosis and ketogenesis in wild-type mice and mice with defects in phagosome maturation using a mouse RPE explant model. In explant studies, the levels of ß-HB released were temporally correlated with OS phagocytic burst after light onset. In the Mreg-/- mouse where phagosome maturation is delayed, there was a temporal shift in the release of ß-HB. An even more pronounced shift in maximal ß-HB production was observed in the Abca4-/- RPE, in which loss of the ATP-binding cassette A4 transporter results in defective phagosome processing and accumulation of lipid debris. These studies suggest that FAO and ketogenesis are key to supporting the metabolism of the RPE and preventing the accumulation of lipids that lead to oxidative stress and mitochondrial dysfunction.


Assuntos
Cetonas/química , Fagocitose , Epitélio Pigmentado da Retina/metabolismo , Ácido 3-Hidroxibutírico/química , Animais , Linhagem Celular , Meios de Cultura , Feminino , Genótipo , Humanos , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxigênio/química , Fagossomos/metabolismo
7.
Planta ; 247(6): 1267-1276, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29453664

RESUMO

MAIN CONCLUSION: Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.


Assuntos
Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/metabolismo , Oryza/genética , Ativação Transcricional , Genes Reporter , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Adv Exp Med Biol ; 1074: 609-616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721994

RESUMO

Microtubule-associated protein 1 light chain 3 (MAP1LC3), a human homologue of yeast Atg8, is an essential component of autophagy. LC3 plays a critical role in hybrid degradation pathways in which some but not all components of autophagy are coupled with phagocytosis in a process known as LC3-associated phagocytosis (LAP). LC3 exists as three highly homologous isoforms in human (LC3A, LC3B, and LC3C) with two of these (LC3A and LC3B) in mouse. LC3B predominated in both fetal and adult human retinal pigment epithelium (RPE) relative to LC3A and LC3C, while in mouse RPE and neural retina, LC3A and LC3B were expressed at approximately equivalent levels. In situ hybridization studies localized LC3A and LC3B transcripts in the retina and RPE. LC3B protein was detected in C57Bl6/J RPE and retinal lysates and was absent in the LC3BKO mouse.


Assuntos
Proteínas do Olho/análise , Proteínas Associadas aos Microtúbulos/análise , Retina/química , Processamento Alternativo , Animais , Autofagia , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Immunoblotting , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Isoformas de Proteínas/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Retina/ultraestrutura , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/ultraestrutura
9.
Adv Exp Med Biol ; 1074: 309-315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721958

RESUMO

Canine bestrophinopathy (cBest) is an important translational model for BEST1-associated maculopathies in man that recapitulates the broad spectrum of clinical and molecular disease aspects observed in patients. Both human and canine bestrophinopathies are characterized by focal to multifocal separations of the retina from the RPE. The lesions can be macular or extramacular, and the specific pathomechanism leading to formation of these lesions remains unclear. We used the naturally occurring canine BEST1 model to examine factors that underlie formation of vitelliform lesions and addressed the susceptibility of the macula to its primary detachment in BEST1-linked maculopathies.


Assuntos
Bestrofinas/deficiência , Doenças do Cão/patologia , Modelos Animais , Epitélio Pigmentado da Retina/patologia , Distrofia Macular Viteliforme/veterinária , Animais , Bestrofinas/genética , Bestrofinas/fisiologia , Proteínas do Citoesqueleto/metabolismo , Doenças do Cão/genética , Doenças do Cão/metabolismo , Cães , Matriz Extracelular/patologia , Proteínas do Olho/metabolismo , Genes Recessivos , Humanos , Microvilosidades/patologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Descolamento Retiniano/etiologia , Epitélio Pigmentado da Retina/metabolismo , Especificidade da Espécie , Simportadores/metabolismo , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/metabolismo , Distrofia Macular Viteliforme/patologia
10.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694291

RESUMO

Porphyromonas gingivalis is a keystone pathogen that contributes to periodontal pathogenesis by disrupting host-microbe homeostasis and promoting dysbiosis. The virulence of P. gingivalis likely reflects an alteration in the lipid A composition of its lipopolysaccharide (LPS) from the penta-acylated (PgLPS1690) to the tetra-acylated (PgLPS1435/1449) form. Mast cells play an important role in periodontitis, but the mechanisms of their activation and regulation remain unknown. The expression of epithelium- and neutrophil-derived host defense peptides (HDPs) (LL-37 and human ß-defensin-3), which activate mast cells via Mas-related G protein-coupled receptor X2 (MRGPRX2), is increased in periodontitis. We found that MRGPRX2-expressing mast cells are present in normal gingiva and that their numbers are elevated in patients with chronic periodontitis. Furthermore, HDPs stimulated degranulation in a human mast cell line (LAD2) and in RBL-2H3 cells stably expressing MRGPRX2 (RBL-MRGPRX2). PgLPS1690 caused substantial inhibition of HDP-induced mast cell degranulation, but PgLPS1435/1449 had no effect. A fluorescently labeled HDP (FAM-LL-37) bound to RBL-MRGPRX2 cells, and PgLPS1690 inhibited this binding, but PgLPS1435/1449 had no effect. These findings suggest that low-level inflammation induced by HDP/MRGPRX2-mediated mast cell degranulation contributes to gingival homeostasis but that sustained inflammation due to elevated levels of both HDPs and MRGPRX2-expressing mast cells promotes periodontal disease. Furthermore, differential regulation of HDP-induced mast cell degranulation by PgLPS1690 and PgLPS1435/1449 may contribute to the modulation of disease progression.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Infecções por Bacteroidaceae/imunologia , Degranulação Celular , Periodontite Crônica/imunologia , Lipopolissacarídeos/imunologia , Mastócitos/imunologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Linhagem Celular , Periodontite Crônica/microbiologia , Imunofluorescência , Gengiva/imunologia , Gengiva/microbiologia , Gengiva/ultraestrutura , Humanos , Lipopolissacarídeos/metabolismo , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Porphyromonas gingivalis/química , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , beta-Defensinas/genética , beta-Defensinas/imunologia , Catelicidinas
11.
Eur J Neurosci ; 43(11): 1509-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27037829

RESUMO

Heterotrimeric G-proteins couple metabotropic receptors to downstream effectors. In retinal ON bipolar cells, Go couples the metabotropic receptor mGluR6 to the TRPM1 channel and closes it in the dark, thus hyperpolarizing the cell. Light, via GTPase-activating proteins, deactivates Go , opens TRPM1 and depolarizes the cell. Go comprises Gαo1 , Gß3 and Gγ13; all are necessary for efficient coupling. In addition, Gß3 contributes to trafficking of certain cascade proteins and to maintaining the synaptic structure. The goal of this study was to determine the role of Gαo1 in maintaining the cascade and synaptic integrity. Using mice lacking Gαo1 , we quantified the immunostaining of certain mGluR6-related components. Deleting Gαo1 greatly reduced staining for Gß3, Gγ13, Gß5, RGS11, RGS7 and R9AP. Deletion of Gαo1 did not affect mGluR6, TRPM1 or PCP2. In addition, deleting Gαo1 reduced the number of rod bipolar dendrites that invaginate the rod terminal, similar to the effect seen in the absence of mGluR6, Gß3 or the matrix-associated proteins, pikachurin, dystroglycan and dystrophin, which are localized presynaptically to the rod bipolar cell. We therefore tested mice lacking mGluR6, Gαo1 and Gß3 for expression of these matrix-associated proteins. In all three genotypes, staining intensity for these proteins was lower than in wild type, suggesting a retrograde trans-synaptic effect. We propose that the mGluR6 macromolecular complex is connected to the presynaptic rod terminal via a protein chain that includes the matrix-associated proteins. When a component of the macromolecular chain is missing, the chain may fall apart and loosen the dendritic tip adherence within the invagination.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/ultraestrutura , Animais , Dendritos/metabolismo , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Transdução de Sinais , Canais de Cátion TRPM/metabolismo
12.
J Physiol ; 593(7): 1531-50, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25416620

RESUMO

Heterotrimeric G-proteins (comprising Gα and Gßγ subunits) are critical for coupling of metabotropic receptors to their downstream effectors. In the retina, glutamate released from photoreceptors in the dark activates metabotropic glutamate receptor 6 (mGluR6) receptors in ON bipolar cells; this leads to activation of Go , closure of transient receptor potential melastatin 1 channels and hyperpolarization of these cells. Go comprises Gαo , Gß3 and a Gγ. The best Gγ candidate is Gγ13, although functional data to support this are lacking. Thus, we tested Gγ13 function by generating Gng13(-/-) knockout (KO) mice, recording electroretinograms (ERG) and performing immunocytochemical staining. The amplitude of scotopic ERG b-waves in KO mice was lower than in wild-type (WT) mice. Furthermore, in both KO and WT mice, the ERG b-wave decreased with age; this decrease was much more pronounced in KO mice. By contrast, the photopic ERG b-waves in KO mice were hardly affected at any age. In KO mice retinas, immunostaining for Gß3 and for the GTPase activating proteins RGS7, RGS11, R9AP and Gß5 decreased significantly in rod bipolar cells but not in ON cone bipolar cells. Staining for Gαo and certain other cascade elements decreased only slightly. Analysis of our ON bipolar cDNA library showed that these cells express mRNAs for Gγ5, Gγ10 and Gγ11. Quantitative RT-PCR of retinal cDNA showed greater values for these transcripts in retinas of KO mice, although the difference was not significant. Our results suggest that Gγ13 contributes to mGluR6 signalling in rod bipolar cells more than in ON cone bipolar cells, and that this contribution includes both coupling the receptor and maintaining a stable localization of the mGluR6-related cascade elements.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Células Bipolares da Retina/fisiologia , Animais , Eletrorretinografia , Feminino , Proteínas Heterotriméricas de Ligação ao GTP/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
J Neurosci ; 33(12): 5182-94, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23516284

RESUMO

Mammalian cones respond to light by closing a cGMP-gated channel via a cascade that includes a heterotrimeric G-protein, cone transducin, comprising Gαt2, Gß3 and Gγt2 subunits. The function of Gßγ in this cascade has not been examined. Here, we investigate the role of Gß3 by assessing cone structure and function in Gß3-null mouse (Gnb3(-/-)). We found that Gß3 is required for the normal expression of its partners, because in the Gnb3(-/-) cone outer segments, the levels of Gαt2 and Gγt2 are reduced by fourfold to sixfold, whereas other components of the cascade remain unaltered. Surprisingly, Gnb3(-/-) cones produce stable responses with normal kinetics and saturating response amplitudes similar to that of the wild-type, suggesting that cone phototransduction can function efficiently without a Gß subunit. However, light sensitivity was reduced by approximately fourfold in the knock-out cones. Because the reduction in sensitivity was similar in magnitude to the reduction in Gαt2 level in the cone outer segment, we conclude that activation of Gαt2 in Gnb3(-/-) cones proceeds at a rate approximately proportional to its outer segment concentration, and that activation of phosphodiesterase and downstream cascade components is normal. These results suggest that the main role of Gß3 in cones is to establish optimal levels of transducin heteromer in the outer segment, thereby indirectly contributing to robust response properties.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Transducina/genética , Visão Ocular/fisiologia , Animais , Cor , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas de Fluorescência Verde/genética , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Estimulação Luminosa , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Transducina/fisiologia , Raios Ultravioleta
14.
J Biol Chem ; 288(10): 7420-9, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23339194

RESUMO

Kir2.4, a strongly rectifying potassium channel that is localized to neurons and is especially abundant in retina, was fished with yeast two-hybrid screen using a constitutively active Gαo1. Here, we wished to determine whether and how Gαo affects this channel. Using transfected HEK 293 cells and retinal tissue, we showed that Kir2.4 interacts with Gαo, and this interaction is stronger with the GDP-bound form of Gαo. Using two-electrode voltage clamp, we recorded from oocytes that were injected with Kir2.4 mRNA and a combination of G-protein subunit mRNAs. We found that the wild type and the inactive mutant of Gαo reduce the Kir2.4 basal current, whereas the active mutant has little effect. Other pertussis-sensitive Gα subunits also reduce this current, whereas Gαs increases it. Gßγ increases the current, whereas m-phosducin, which binds Gßγ without affecting the state of Gα, reduces it. We then tested the effect of G-protein subunits on the surface expression of the channel fused to cerulean by imaging the plasma membranes of the oocytes. We found that the surface expression is affected, with effects paralleling those seen with the basal current. This suggests that the observed effects on the current are mainly indirect and are due to surface expression. Similar results were obtained in transfected HEK cells. Moreover, we show that in retinal ON bipolar cells lacking Gß3, localization of Kir2.4 in the dendritic tips is reduced. We conclude that Gßγ targets Kir2.4 to the plasma membrane, and Gαo slows this down by binding Gßγ.


Assuntos
Membrana Celular/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Ativação do Canal Iônico/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ligação Proteica , Retina/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xenopus
15.
Pathogens ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392893

RESUMO

Recently, we reported that oral-epithelial cells (OE) are unique in their response to Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) in that cell cycle arrest (G2/M) occurs without leading to apoptosis. We now demonstrate that Cdt-induced cell cycle arrest in OE has a duration of at least 7 days with no change in viability. Moreover, toxin-treated OE develops a new phenotype consistent with cellular senescence; this includes increased senescence-associated ß-galactosidase (SA-ß-gal) activity and accumulation of the lipopigment, lipofuscin. Moreover, the cells exhibit a secretory profile associated with cellular senescence known as the senescence-associated secretory phenotype (SASP), which includes IL-6, IL-8 and RANKL. Another unique feature of Cdt-induced OE senescence is disruption of barrier function, as shown by loss of transepithelial electrical resistance and confocal microscopic assessment of primary gingival keratinocyte structure. Finally, we demonstrate that Cdt-induced senescence is dependent upon the host cell protein cellugyrin, a homologue of the synaptic vesicle protein synaptogyrin. Collectively, these observations point to a novel pathogenic outcome in oral epithelium that we propose contributes to both A. actinomycetemcomitans infection and periodontal disease progression.

16.
Stress Biol ; 4(1): 34, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073476

RESUMO

As sessile organisms, plants constantly face a variety of abiotic stresses, such as drought, salinity, and metal/metalloid toxicity, all of which possess significant threats to plant growth and yield potential. Improving plant resilience to such abiotic stresses bears paramount importance in practicing sustainable agriculture worldwide. Acetic acid/acetate has been recognized as an important metabolite with multifaceted roles in regulating plant adaptation to diverse abiotic stresses. Recent studies have elucidated that acetic acid can potentiate plants' inherent mechanisms to withstand the adverse effects of abiotic stresses through the regulation of lipid metabolism, hormone signaling, epigenetic changes, and physiological defense mechanisms. Numerous studies also underpin the potential use of acetic acid in boosting crop production under unfavorable environmental conditions. This review provides a comprehensive update on the understanding of how acetic acid regulates plant photosynthesis, acts as an antitranspirant, detoxifies reactive oxygen species to alleviate oxidative stress, interacts with phytohormones to regulate physiological processes, and improves soil fertility and microbial diversity, with a specific focus on drought, salinity, and metal toxicity. We also highlight the eco-friendly and economic potential of acetic acid that may attract farmers from developing countries to harness the benefits of acetic acid application for boosting abiotic stress resistance in crops. Given that acetic acid is a widely accessible, inexpensive, and eco-friendly compound, the revelation of acetic acid-mediated regulatory pathways and its crosstalk with other signaling molecules will have significant importance in developing a sustainable strategy for mitigating abiotic stresses in crops.

17.
J Neurosci ; 32(33): 11343-55, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895717

RESUMO

Heterotrimeric G-proteins, comprising Gα and Gßγ subunits, couple metabotropic receptors to various downstream effectors and contribute to assembling and trafficking receptor-based signaling complexes. A G-protein ß subunit, Gß(3), plays a critical role in several physiological processes, as a polymorphism in its gene is associated with a risk factor for several disorders. Retinal ON bipolar cells express Gß(3), and they provide an excellent system to study its role. In the ON bipolar cells, mGluR6 inverts the photoreceptor's signal via a cascade in which glutamate released from photoreceptors closes the TRPM1 channel. This cascade is essential for vision since deficiencies in its proteins lead to complete congenital stationary night blindness. Here we report that Gß(3) participates in the G-protein heterotrimer that couples mGluR6 to TRPM1. Gß(3) deletion in mouse greatly reduces the light response under both scotopic and photopic conditions, but it does not eliminate it. In addition, Gß(3) deletion causes mislocalization and downregulation of most cascade elements and modulators. Furthermore, Gß(3) may play a role in synaptic maintenance since in its absence, the number of invaginating rod bipolar dendrites is greatly reduced, a deficit that was not observed at 3 weeks, the end of the developmental period.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/genética , Células Bipolares da Retina/metabolismo , Sinapses/fisiologia , Animais , Colina O-Acetiltransferase/metabolismo , Dendritos/ultraestrutura , Estimulação Elétrica , Eletrorretinografia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/deficiência , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Imunoprecipitação , Técnicas In Vitro , Luz , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Estimulação Luminosa , Propionatos/farmacologia , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Retina/citologia , Células Bipolares da Retina/efeitos dos fármacos , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/genética , Sinapses/metabolismo , Sinapses/ultraestrutura , Canais de Cátion TRPM/metabolismo , Vias Visuais/fisiologia
18.
Plant Genome ; 16(3): e20350, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37351954

RESUMO

MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.


Assuntos
MicroRNAs , MicroRNAs/genética , Arachis/genética , Secas , Resposta ao Choque Térmico , RNA Mensageiro/metabolismo
19.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36993501

RESUMO

LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.

20.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38105975

RESUMO

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA