Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nature ; 617(7962): 717-723, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37225883

RESUMO

Flexible solar cells have a lot of market potential for application in photovoltaics integrated into buildings and wearable electronics because they are lightweight, shockproof and self-powered. Silicon solar cells have been successfully used in large power plants. However, despite the efforts made for more than 50 years, there has been no notable progress in the development of flexible silicon solar cells because of their rigidity1-4. Here we provide a strategy for fabricating large-scale, foldable silicon wafers and manufacturing flexible solar cells. A textured crystalline silicon wafer always starts to crack at the sharp channels between surface pyramids in the marginal region of the wafer. This fact enabled us to improve the flexibility of silicon wafers by blunting the pyramidal structure in the marginal regions. This edge-blunting technique enables commercial production of large-scale (>240 cm2), high-efficiency (>24%) silicon solar cells that can be rolled similarly to a sheet of paper. The cells retain 100% of their power conversion efficiency after 1,000 side-to-side bending cycles. After being assembled into large (>10,000 cm2) flexible modules, these cells retain 99.62% of their power after thermal cycling between -70 °C and 85 °C for 120 h. Furthermore, they retain 96.03% of their power after 20 min of exposure to air flow when attached to a soft gasbag, which models wind blowing during a violent storm.

2.
Nano Lett ; 24(8): 2444-2450, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363218

RESUMO

Quantum Griffiths phase (QGP) is a novel quantum phenomenon of quantum phase transition in two-dimensional (2D) superconductors, and the emergence of inhomogeneous superconducting rare regions immersed in a metallic matrix is theoretically related to the quantum Griffiths singularity (QGS). However, the theoretical proposal of superconducting rare regions still lacks intuitive experimental verification. Here, we construct an artificial ordered superconducting-islands-array on monolayer graphene with the aid of an anodic aluminum oxide (AAO) membrane. The QGS under both in-plane and out-of-plane magnetic fields is evidenced by the divergent dynamical critical exponent and is in compliance with the direct activated scaling behavior. The phase diagram clearly shows that the QGP is indeed bred in the rare superconducting regions within isolated superconducting islands with a vanished quantum coherence. Our results reveal the universal features of QGP in artificial heterostructured systems and provide a visualized platform for the theoretical proposal of QGS.

3.
Nano Lett ; 24(30): 9296-9301, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037306

RESUMO

The two-dimensional (2D) honeycomb lattice has attracted intensive research interest due to the appearance of Dirac-type band structures as the consequence of two sublattices in the honeycomb structure. Introducing strong spin-orbit coupling (SOC) leads to a gap opening at the Dirac point, transforming the honeycomb lattice into a 2D topological insulator as a platform for the quantum spin Hall effect (QSHE). In this work, we realize a 2D honeycomb-structured film with tellurium, the heaviest nonradioactive element in Group VI, namely, tellurene, via molecular beam epitaxy. We revealed the gap opening of 160 meV at the Dirac point due to the strong SOC in the honeycomb-structured tellurene by angle-resolved photoemission spectroscopy. The topological edge states of tellurene are detected via scanning tunneling microscopy/spectroscopy. These results demonstrate that tellurene is a novel 2D honeycomb lattice with strong SOC, and they unambiguously prove that tellurene is a promising candidate for a room-temperature QSHE system.

4.
Small ; : e2403187, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092678

RESUMO

2D materials with atomically thin nature are promising to develop scaled transistors and enable the extreme miniaturization of electronic components. However, batch manufacturing of top-gate 2D transistors remains a challenge since gate dielectrics or gate electrodes transferred from 2D material easily peel away as gate pitch decreases to the nanometer scale during lift-off processes. In this study, an oxidation-assisted etching technique is developed for batch manufacturing of nanopatterned high-κ/metal gate (HKMG) stacks on 2D materials. This strategy produces nano-pitch self-oxidized Al2O3/Al patterns with a resolution of 150 nm on 2D channel material, including graphene, MoS2, and WS2 without introducing any additional damage. Through a gate-first technology in which the Al2O3/Al gate stacks are used as a mask for the formation of source and drain, a short-channel HKMG MoS2 transistor with a nearly ideal subthreshold swing (SS) of 61 mV dec-1, and HKMG graphene transistor with a cut-off frequency of 150 GHz are achieved. Moreover, both graphene and MoS2 HKMG transistor arrays exhibit high uniformity. The study may bring the potential for the massive production of large-scale integrated circuits using 2D materials.

5.
Small ; 18(19): e2200913, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35411673

RESUMO

Direct atomic-scale observation of the local phase transition in transition metal dichalcogenides (TMDCs) is critically required to carry out in-depth studies of their atomic structures and electronic features. However, the structural aspects including crystal symmetries tend to be unclear and unintuitive in real-time monitoring of the phase transition process. Herein, by using in situ transmission electron microscopy, information about the phase transition mechanism of MoTe2 from hexagonal structure (2H phase) to monoclinic structure (1T' phase) driven by sublimation of Te atoms after a spike annealing is obtained directly. Furthermore, with the control of Te atom sublimation by modulating the hexagonal boron nitride (h-BN) coverage in the desired area, the lateral 1T'-enriched MoTe2 /2H MoTe2 homojunction can be one-step constructed via an annealing treatment. Owing to the gradient bandgap provided by 1T'-enriched MoTe2 and 2H MoTe2 , the photodetector composed of the 1T'-enriched MoTe2 /2H MoTe2 homojunction shows fast photoresponse and ten times larger photocurrents than that consisting of a pure 2H MoTe2 channel. The study reveals a route to improve the performance of optoelectronic and electronic devices based on TMDCs with both semiconducting and semimetallic phases.

6.
Nanotechnology ; 33(34)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576894

RESUMO

The metal/germanium (Ge) photodetectors have attracted much attention for their potential applications in on-chip optoelectronics. One critical issue is the relatively large dark current due to the limited Schottky potential barrier height of the metal/germanium junction, which is mainly caused by the small bandgap of Ge and the Fermi energy level pinning effect between the metal and Ge. The main technique to solve this problem is to insert a thin interlayer between the metal and Ge. However, so far, the dark current of the photodetectors is still large when using a bulk-material insertion layer, while when using a two-dimensional insertion layer, the area of the insertion layer is too small to support a mass production. Here, we report a gold/graphene/germanium photodetector with a wafer-scale graphene insertion layer using a 4 inch graphene-on-germanium wafer. The insertion layer significantly increases the potential barrier height, leading to a dark current as low as 1.6 mA cm-2, and a responsivity of 1.82 A W-1which are the best results for metal/Ge photodetectors reported so far. Our work contributes to the mass production of high-performance metal/Ge photodetectors.

7.
Nano Lett ; 20(5): 3872-3879, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32293186

RESUMO

GeSn offers a reduced bandgap than Ge and has been utilized in Si-based infrared photodetectors with an extended cutoff wavelength. However, the traditional GeSn/Ge heterostructure usually consists of defects like misfit dislocations due to the lattice mismatch issue. The defects with the large feature size of a photodetector fabricated on bulk GeSn/Ge heterostructures induce a considerable dark current. Here, we demonstrate a flexible GeSn/Ge dual-nanowire (NW) structure, in which the strain relaxation is achieved by the elastic deformation without introducing defects, and the feature dimension is naturally at the nanoscale. A photodetector with a low dark current can be built on a GeSn/Ge dual-NW, which exhibits an extended detection wavelength beyond 2 µm and enhanced responsivity compared to the Ge NW. Moreover, the dark current can be further suppressed by the depletion effect from the ferroelectric polymer side gate. Our work suggests the flexible GeSn/Ge dual-NW may open an avenue for Si-compatible optoelectronic circuits operating in the short-wavelength infrared range.

8.
Small ; 16(14): e1907170, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105406

RESUMO

Inspired by the promising applications in thermopower generation from waste heat and active on-chip cooling, the thermoelectric and electrothermal properties of graphene have been extensively pursued by seeking ingeniously designed structures with thermoelectric conversion capability. The graphene wrinkle is a ubiquitous structure formed inevitably during the synthesis of large-scale graphene films but the corresponding properties for thermoelectric and electrothermal applications are rarely investigated. Here, the electrothermal Peltier effect from the graphene wrinkle fabricated on a germanium substrate is reported. Peltier cooling and heating across the wrinkle are visualized unambiguously with polarities consistent with p-type doping and in accordance with the wrinkle spatial distribution. By direct patterning of the nano-bubble structure, the current density across the wrinkle can be boosted by current crowding to enhance the Peltier effect. The observed Peltier effect can be attributed to the nonequilibrium charge transport by interlayer tunneling across the van der Waals barrier of the graphene wrinkle. The graphene wrinkle in combination with nano-bubble engineering constitutes an innovative and agile platform to design graphene and other more general two-dimensional (2D) thermoelectrics and opens the possibility for realizing active on-chip cooling for 2D nanoelectronics with van der Waals junctions.

9.
Small ; 16(20): e2000852, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323489

RESUMO

Tuning bandgap and phases in the ternary 2D transition metal dichalcogenides (TMDs) alloys has opened up unexpected opportunities to engineer optoelectronic properties and explore potential applications. In this work, a salt-assisted chemical deposition vapor (CVD) growth strategy is reported for the creation of high-quality monolayer W1- x Rex S2 alloys to fulfill a readily phase control from 1H to DT by changing the ratio of Re and W precursors. The structures and chemical compositions of doping alloys are confirmed by combining atomic resolution scanning transmission electron microscopy-annular dark field imaging with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy, matching well with the calculated results. The field-effect transistors (FETs) devices fabricated based on 1H-W0.9 Re0.1 S2 monolayer exhibit a n-type semiconducting behavior with the mobility of 0.4 cm2 V-1 s-1 . More importantly, the FETs show high-performance responsivity with a value of 17 µA W-1 in air, which is superior to that of monolayer CVD-grown WS2 . This work paves the way toward synthesizing monolayer ternary alloys with controlled phases for potential optoelectronic applications.

10.
Small ; 15(23): e1805477, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31026126

RESUMO

On-chip strain engineering is highly demanded in 2D materials as an effective route for tuning their extraordinary properties and integrating consistent functionalities toward various applications. Herein, rolling technique is proposed for strain engineering in monolayer graphene grown on a germanium substrate, where compressive or tensile strain could be acquired, depending on the designed layer stressors. Unusual compressive strains up to 0.30% are achieved in the rolled-up graphene tubular structures. The subsequent phonon hardening under compressive loading is observed through strain-induced Raman G band splitting, while distinct blueshifts of characteristic peaks (G+ , G- , or 2D) can be well regulated on an asymmetric tubular structure with a strain variation. In addition, due to the strong confinement of the local electromagnetic field under 3D tubular geometry, the photon-phonon interaction is highly strengthened, and thus, the Raman scattering of graphene in rolled-up tubes is enhanced. Such an on-chip rolling approach leads to a superior strain tuning method in 2D materials and could improve their light-matter interaction in a tubular configuration, which may hold great capability in 2D materials integration for on-chip applications such as in mechanics, electronics, and photonics.

11.
Small ; 15(42): e1902528, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482646

RESUMO

Transition metal dichalcogenides, as a kind of 2D material, are suitable for near-infrared to visible photodetection owing to the bandgaps ranging from 1.0 to 2.0 eV. However, limited light absorption restricts photoresponsivity due to the ultrathin thickness of 2D materials. 3D tubular structures offer a solution to solve the problem because of the light trapping effect which can enhance optical absorption. In this work, thanks to mechanical flexibility of 2D materials, self-rolled-up technology is applied to build up a 3D tubular structure and a tubular photodetector is realized based on the rolled-up molybdenum diselenide microtube. The tubular device is shown to present one order higher photosensitivity compared with planar counterparts. Enhanced optical absorption arising from the multiple reflections inside the tube is the main reason for the increased photocurrent. This tubular device offers a new design for increasing the efficiency of transition metal dichalcogenide-based photodetection and could hold great potential in the field of 3D optoelectronics.

12.
Small ; 15(2): e1804337, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30506848

RESUMO

The intensity ratio of the 2D band to the G band, I2D /IG , is a good criterion in selecting high quality monolayer graphene samples; however, the evaluation of the ultimate value of I2D /IG for intrinsic monolayer graphene is a challenging yet interesting issue. Here, an interesting tension-induced Raman enhancement phenomenon is reported in supported graphene membranes, which show a transition from the corrugated state to the stretched state in the vicinity of wells. The I2D /IG of substrate-supported graphene membranes near wells are significantly enhanced up to 16.74, which is the highest experimental value to the best of knowledge, increasing by more than 600% when the testing points approach the well edges.The macroscopic origin of this phenomenon is that corrugated graphene membranes are stretched by built-in tensions. A lattice dynamic model is proposed to successfully reveal the microscopic mechanism of this phenomenon. The theoretical results agree well with the experimental data, demonstrating that tensile stresses can depress the amplitude of in-plane vibration of sp2 -bonded carbon atoms and result in the decrease in the G band intensity. This work can be helpful in furthering the development of the method of suppressing small ripples in graphene and acquiring ultraflat 2D materials.

13.
Nanotechnology ; 30(7): 074004, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523993

RESUMO

We report a NO2 gas sensor based on germanium quantum dots (GeQDs)/graphene hybrids. Graphene was directly grown on germanium through chemical vapor deposition and the GeQDs were synthesized via molecular beam epitaxy. The samples were characterized by atomic force microscope, Raman spectra, scanning electron microscope, x-ray photoelectron spectroscope and transmission electron microscope with energy dispersive x-ray. By introducing GeQDs on graphene, the gas sensor sensitivity to NO2 was improved substantially. With the optimization of the growth time of GeQDs (600 s), the response sensitivity to 10 ppm NO2 can be as high as 3.88, which is 20 times higher than that of the graphene sensor without GeQDs decoration. In addition, the 600 s GeQDs/graphene hybrid sensor exhibits fast response and recovery rates as well as excellent stability. Our work may provide a new route to produce low-power consumption, portable, and room temperature gas sensor which is amenable to mass production.

14.
Nano Lett ; 18(9): 6030-6036, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165022

RESUMO

Two-dimensional (2D) materials have seen a broad range of applications in electronic and optoelectronic applications; however, full realization of this potential hitherto largely hinges on the quality and performance of the electrical contacts formed between 2D materials and their surrounding metals/semiconductors. Despite the progress in revealing the charge injecting mechanisms and enhancing electrical conductance using various interfacial treatments, how the microstructure of contact interfaces affects local electrical conductivity is still very limited. Here, using conductive atomic force microscopy (c-AFM), for the first time, we directly confirm the conjecture that the electrical conductivity of physisorbed 2D material-metal/semiconductor interfaces is determined by the local electronic charge transfer. Using lattice-resolved conductivity mapping and first-principles calculations, we demonstrate that the electronic charge transfer, thereby electrical conductivity, can be fine-tuned by the topological defects of 2D materials and the atomic stacking with respect to the substrate. Our finding provides a novel route to engineer the electrical contact properties by exploiting fine atomic interactions; in the meantime, it also suggests a convenient and nondestructive means of probing subtle interactions along 2D heterogeneous interfaces.

15.
Small ; 14(47): e1802985, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30303618

RESUMO

Flexible transient photodetectors, a form of optoelectronic sensors that can be physically self-destroyed in a controllable manner, could be one of the important components for future transient electronic systems. In this work, a scalable, device-first, and bottom-up thinning process enables the fabrication of a flexible transient phototransistor on a wafer-compatible transferred silicon nanomembrane. A gate modulation significantly restrains the dark current to 10-12 A. With full exposure of the light-sensitive channel, such a device yields an ultrahigh photo-to-dark current ratio of 107 with a responsivity of 1.34 A W-1 (λ = 405 nm). The use of a high-temperature degradable polymer transient interlayer realizes on-demand self-destruction of the fabricated phototransistors, which offers a solution to the technical security issue of advanced flexible electronics. Such demonstration paves a new way for designing transient optoelectronic devices with a wafer-compatible process.

16.
Nanotechnology ; 29(42): 42LT02, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30052202

RESUMO

Germanium-Tin (GeSn) alloys have attracted great amounts of attention as these group IV semiconductors present direct band-gap behavior with high Sn content and are compatible with current complementary metal oxide semiconductor technology. In this work, three dimensional tubular GeSn/Ge micro-resonators with a diameter of around 7.3 µm were demonstrated by rolling up GeSn nanomembranes (NM) grown on a Ge-on-insulator wafer via molecular beam epitaxy. The microstructural properties of the resonators were carefully investigated and the strain distributions of the rolled-up GeSn/Ge microcavities along the radial direction were studied by utilizing micro-Raman spectroscopy with different excitation laser wavelengths. The values of the strains calculated from Raman shifts agree well with the theoretical prediction. Coupled with fiber tapers, as-fabricated devices present a high quality factor of up to 800 in the transmission spectral measurements. The micro-resonators fabricated via rolled-up nanotechnology and GeSn/Ge NMs in this work may have great potential in photonic micro- and nanodevices.

17.
Nano Lett ; 17(3): 1552-1558, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28135102

RESUMO

Besides the well-known quantum confinement effect, hot luminescence from indirect bandgap Si provides a new and promising approach to realize monolithically integrated silicon optoelectronics due to phonon-assisted light emission. In this work, multiband hot photoluminescence is generated from Si nanowire arrays by introducing trapezoid-shaped nanocavities that support hybrid photonic-plasmonic modes. By continuously adjusting the geometric parameters of the Si nanowires with trapezoidal nanocavities, the multiband hot photoluminescence can be tuned in the range from visible to near-infrared independent of the excitation laser wavelength. The highly tunable wavelength bands and concomitant compatibility with Si-integrated electronics enable tailoring of silicon-based light sources suitable for next-generation optoelectronics devices.

18.
Small ; 13(28)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28561931

RESUMO

Direct growth of graphene on dielectric substrates is a prerequisite to the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis methods on dielectric substrates always involve a metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. Herein, a semiconducting, germanium (Ge)-assisted, chemical vapor deposition approach is proposed to produce monolayer graphene directly on arbitrary dielectric substrates. By the prepatterning of a catalytic Ge layer, the graphene with desired pattern can be achieved conveniently and readily. Due to the catalysis of Ge, monolayer graphene is able to form on Ge-covered dielectric substrates including SiO2 /Si, quartz glass, and sapphire substrates. Optimization of the process parameters leads to complete sublimation of the catalytic Ge layer during or immediately after formation of the monolayer graphene, enabling direct deposition of large-area and continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on a transparent dielectric substrate using the proposed approach has exhibited a wide range of applications, including in both defogger and thermochromic displays, as already successfully demonstrated here.

19.
Nano Lett ; 16(5): 3160-5, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27101021

RESUMO

The unidirectional alignment of graphene islands is essential to the synthesis of wafer-scale single-crystal graphene on Ge(110) surface, but the underlying mechanism is not well-understood. Here we report that the necessary coalignment of the nucleating graphene islands on Ge(110) surface is caused by the presence of step-pattern; we show that on the preannealed Ge(110) textureless surface the graphene islands appear nonpreferentially orientated, while on the Ge(110) surfaces with natural step pattern, all graphene islands emerge coaligned. First-principles calculations and theoretical analysis reveal this different alignment behaviors originate from the strong chemical binding formed between the graphene island edges and the atomic steps on the Ge(110) surface, and the lattice matching at edge-step interface dictates the alignment of graphene islands with the armchair direction of graphene along the [-110] direction of the Ge(110) substrate.

20.
Small ; 11(33): 4140-8, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25966037

RESUMO

As the promising building blocks for flexible electronics and photonics, inorganic semiconductor nanomembranes have attracted considerable attention owing to their excellent mechanical flexibility and electrical/optical properties. To functionalize these building blocks with complex components, transfer and printing methods in a convenient and precise way are urgently demanded. A combined and controllable approach called edge-cutting transfer method to assemble semiconductor nanoribbons with defined width (down to submicrometer) and length (up to millimeter) is proposed. The transfer efficiency can be comprehended by a classical cantilever model, in which the difference of stress distributions between forth and back edges is investigated using finite element method. In addition, the vertical van der Waals PN (p-Si/n-Ge) junction constructed by a two-round process presents a typical rectifying behavior. The proposed technology may provide a practical, reliable, and cost-efficient strategy for transfer and printing routines, and thus expediting its potential applications for roll-to-roll productions for flexible devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA