Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 11514, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769364

RESUMO

Comorbidity is widespread in the ageing population, implying multiple and complex medical needs for individuals and a public health burden. Determining risk factors and predicting comorbidity development can help identify at-risk subjects and design prevention strategies. Using socio-demographic and clinical data from approximately 11,000 subjects monitored over 11 years in the English Longitudinal Study of Ageing, we develop a dynamic Bayesian network (DBN) to model the onset and interaction of three cardio-metabolic comorbidities, namely type 2 diabetes (T2D), hypertension, and heart problems. The DBN allows us to identify risk factors for developing each morbidity, simulate ageing progression over time, and stratify the population based on the risk of outcome occurrence. By applying hierarchical agglomerative clustering to the simulated, dynamic risk of experiencing morbidities, we identified patients with similar risk patterns and the variables contributing to their discrimination. The network reveals a direct joint effect of biomarkers and lifestyle on outcomes over time, such as the impact of fasting glucose, HbA1c, and BMI on T2D development. Mediated cross-relationships between comorbidities also emerge, showcasing the interconnected nature of these health issues. The model presents good calibration and discrimination ability, particularly in predicting the onset of T2D (iAUC-ROC = 0.828, iAUC-PR = 0.294) and survival (iAUC-ROC = 0.827, iAUC-PR = 0.311). Stratification analysis unveils two distinct clusters for all comorbidities, effectively discriminated by variables like HbA1c for T2D and age at baseline for heart problems. The developed DBN constitutes an effective, highly-explainable predictive risk tool for simulating and stratifying the dynamic risk of developing cardio-metabolic comorbidities. Its use could help identify the effects of risk factors and develop health policies that prevent the occurrence of comorbidities.


Assuntos
Envelhecimento , Teorema de Bayes , Comorbidade , Diabetes Mellitus Tipo 2 , Modelos Estatísticos , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Estudos Longitudinais , Fatores de Risco , Hipertensão/epidemiologia , Adulto , Idoso de 80 Anos ou mais , Cardiopatias/epidemiologia
3.
Food Res Int ; 178: 113975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309918

RESUMO

Origin authentication methods are pivotal in counteracting frauds and provide evidence for certification systems. For these reasons, geographical origin authentication methods are used to ensure product origin. This study focused on the origin authentication (i.e. at the producer level) of a typical mountain cheese origin using various approaches, including shotgun metagenomics, volatilome, near infrared spectroscopy, stable isotopes, and elemental analyses. DNA-based analysis revealed that viral communities achieved a higher classification accuracy rate (97.4 ± 2.6 %) than bacterial communities (96.1 ± 4.0 %). Non-starter lactic acid bacteria and phages specific to each origin were identified. Volatile organic compounds exhibited potential clusters according to cheese origin, with a classification accuracy rate of 90.0 ± 11.1 %. Near-infrared spectroscopy showed lower discriminative power for cheese authentication, yielding only a 76.0 ± 31.6 % classification accuracy rate. Model performances were influenced by specific regions of the infrared spectrum, possibly associated with fat content, lipid profile and protein characteristics. Furthermore, we analyzed the elemental composition of mountain Caciotta cheese and identified significant differences in elements related to dairy equipment, macronutrients, and rare earth elements among different origins. The combination of elements and isotopes showed a decrease in authentication performance (97.0 ± 3.1 %) compared to the original element models, which were found to achieve the best classification accuracy rate (99.0 ± 0.01 %). Overall, our findings emphasize the potential of multi-omics techniques in cheese origin authentication and highlight the complexity of factors influencing cheese composition and hence typicity.


Assuntos
Queijo , Queijo/análise , Espectroscopia de Luz Próxima ao Infravermelho , Isótopos/análise , Isótopos/química , DNA , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA