Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(25): 7369-7374, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29603563

RESUMO

Ahead of display, a non-original layer was observed on the surface of a fragment of a wall painting by Ambrogio Lorenzetti (active 1319, died 1348/9). FTIR analysis suggested proteinaceous content. Mass spectrometry was used to better characterise this layer and revealed two protein components: sheep and cow glue and chicken and duck egg white. Analysis of post-translational modifications detected several photo-oxidation products, which suggest that the egg experienced prolonged exposure to UV light and was likely applied long before the glue layer. Additionally, glycation products detected may indicate naturally occurring glycoprotein degradation or reaction with a carbohydrate material such as starch, identified by ATR-FTIR in a cross-section of a sample taken from the painting. Palaeoproteomics is shown to provide detailed characterisation of organic layers associated with mural paintings and therefore aids reconstruction of the conservation history of these objects.

2.
Sci Rep ; 14(1): 13431, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862633

RESUMO

Until recently, the identification of the species of origin for skin and fur materials used in the production of archaeological clothing has been based on the analysis of macro- and microscopic morphological features and on the traditional knowledge of Indigenous groups. This approach, however, is not always applicable due to the deterioration of the archaeological objects. Paleoproteomics was used as an alternative approach to identify the species of origin of fifteen samples of various tissues from approximately 600-year-old garments found in Nuulliit, northern Greenland. Proteomics revealed that a limited group of marine and terrestrial mammals were used for clothing production. The results obtained from the analysis of multiple types of clothing and elements, such as sinew thread and gut skin, suggest that their applications were based on their properties. When conclusive assignment of a sample to a species via proteomics was not possible, the observation by transmitted light microscopy of feather and hair micromorphology, if not affected by diagenesis, was used to improve the identification. The proteomic characterization of animal materials used for clothing production in the Nuulliit archaeological context provides an insight into the practical knowledge and the strategies adopted by the local Indigenous community to exploit natural resources.


Assuntos
Arqueologia , Vestuário , Proteômica , Pele , Groenlândia , Arqueologia/métodos , Proteômica/métodos , Animais , Pele/química , Vestuário/história , Humanos
3.
Sci Adv ; 9(21): eade7686, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224244

RESUMO

The application of mass spectrometry-based proteomics to artworks provides accurate and detailed characterization of protein-based materials used in their production. This is highly valuable to plan conservation strategies and reconstruct the artwork's history. In this work, the proteomic analysis of canvas paintings from the Danish Golden Age led to the confident identification of cereal and yeast proteins in the ground layer. This proteomic profile points to a (by-)product of beer brewing, in agreement with local artists' manuals. The use of this unconventional binder can be connected to the workshops within the Royal Danish Academy of Fine Arts. The mass spectrometric dataset generated from proteomics was also processed with a metabolomics workflow. The spectral matches observed supported the proteomic conclusions, and, in at least one sample, suggested the use of drying oils. These results highlight the value of untargeted proteomics in heritage science, correlating unconventional artistic materials with local culture and practices.


Assuntos
Pinturas , Cerveja , Proteômica , Grão Comestível , Dinamarca
4.
Sci Rep ; 9(1): 5533, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940852

RESUMO

Modern oil paintings are affected by conservation issues related to the oil paint formulations and to the fact that they are often unvarnished, and in direct contact with the environment. Understanding the evolution of the molecular composition of modern oil paint during ageing, under the influence of environmental factors, is fundamental for a better knowledge of degradation phenomena and risk factors affecting modern art. We investigated for the first time the influence of relative humidity on the chemical composition of modern oil paints during curing and artificial ageing. For this purpose, modern oil paint layers naturally aged for 10 years were further artificially aged in low and high relative humidity conditions. Moreover, the influence of RH% on the curing of fresh paint layers was studied. The paints used in the experiments are from three suppliers (Old Holland, Winsor&Newton, and Talens), and contain cadmium or cadmium zinc sulfide as main pigment. The changes in the composition of extracts of paint samples were investigated by direct electrospray mass spectrometry with a quadrupole-time of flight mass analyser (ESI-Q-ToF). The obtained mass spectral data were interpreted by means of principal component analysis (PCA) operated on a data set containing the relative abundance of ions associated to significant molecules present in the extracts, and also by calculating the ratios between the signals relative to fatty acids, dicarboxylic acids and acylglycerols, related to hydrolysis and oxidation phenomena. The same paint samples were also analysed, in bulk, by pyrolysis gas chromatography mass spectrometry (Py-GC/MS), achieving chemical information on the total lipid fraction. High performance liquid chromatography (HPLC) ESI-Q-ToF was carried out for the characterisation of the profile of free fatty acids (FFA) and acylglycerols, defining the nature of the oils used in the paint formulations, and for the determination of the degree of hydrolysis. This study demonstrated that relative humidity conditions significantly influence the chemical composition of the paints. Ageing under high RH% conditions produced an increase of the formation of dicarboxylic acids compared to ageing under low RH%, for all paints, in addition to a higher degree of hydrolysis, followed by evaporation of free fatty acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA