Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 152(24): 244101, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610994

RESUMO

The diffusion of Li in bulk Si and crystalline LiSi is investigated over a wide range of temperatures employing first-principles calculations based on density functional theory, transition state theory, and the kinetic Monte Carlo method. Nuclear quantum effects are incorporated by computing the vibrational spectrum and its effect on the effective energy barrier. The Li diffusion coefficient in bulk Si calculated with such quantum effects is ∼33% lower than the classical limit near room temperature due to higher effective energy barrier and tends to the classical limit at a high temperature (>1000 K). The presence of anharmonicity, estimated by the quasiharmonic approximation and the cBΩ model, increases the diffusion coefficient by ∼60%. For Li diffusion in LiSi with multiple vacancy jumps, we obtain an effective diffusion barrier of 0.27 eV ± 0.01 eV. In the Li-Si system, the quantum mechanical effects are only marginally significant at room temperature.

2.
Angew Chem Int Ed Engl ; 59(19): 7569-7575, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32065708

RESUMO

The Pauling rules have been used for decades to rationalise the crystal structures of ionic compounds. Despite their importance, there has been no statistical assessment of the performances of these five empirical rules so far. Here, we rigorously and automatically test all five Pauling rules for a large data set of around 5000 known oxides. We discuss each Pauling rule separately, stressing their limits and range of application in terms of chemistries and structures. We conclude that only 13 % of the oxides simultaneously satisfy the last four rules, indicating a much lower predictive power than expected.

3.
Sci Data ; 8(1): 217, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385453

RESUMO

The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We illustrate the advantages of the OPTIMADE API through worked examples on each of the public materials databases that support the full API specification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA