Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(14): 24326-24351, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236990

RESUMO

The atmospheric concentration of methane has more than doubled since the start of the Industrial Revolution. Methane is the second-most-abundant greenhouse gas created by human activities and a major driver of climate change. This APS-Optica report provides a technical assessment of the current state of monitoring U.S. methane emissions from oil and gas operations, which accounts for roughly 30% of U.S. anthropogenic methane emissions. The report identifies current technological and policy gaps and makes recommendations for the federal government in three key areas: methane emissions detection, reliable and systematized data and models to support mitigation measures, and effective regulation.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Humanos , Metano/análise
2.
MethodsX ; 5: 808-811, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105214

RESUMO

This paper presents an alternative method of creating vuggy glass-bead core proxies, which can be used to investigate the effects of pore-scale features on carbonate petrophysical properties. Carbonates are complex rocks having a widespread variation in pore type, size, distribution, and porosity. With this method we can control vug shape, size, and position. Homogeneous glass bead core proxies are sintered using 1.0 mm diameter glass beads in a muffle furnace. Vugs are 3D-printed in plastic and used to make a mold in Play-Doh®; which is cast in gypsum cement and used as a placeholder during the sintering process. The gypsum vug dissolves during acid flood, leaving an empty space inside the glass matrix. Computed tomography (CT) scans are made of the acid washed vug space and compared to the 3D model.

3.
Ann N Y Acad Sci ; 972: 103-10, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12496004

RESUMO

Non-aqueous phase liquids enter the vadose zone as a result of spills or leaking underground storage facilities, thus contaminating groundwater resources. Measuring the contaminant concentrations is important in assessing the risk to human health and the environment and to develop effective remediation. This research presents the development and application of the light transmission method (LTM) for three-phase flow systems, aimed at investigating unstable fingered flow in a soil-air-oil-water system. The LTM uses the hue and intensity of light transmitted through a slab chamber to measure fluid content, since total liquid content is a function of both hue and light intensity. Evaluation of the LTM is obtained by comparing experiments with LTM and synchrotron X-rays. The LTM captures the spatial resolution of the fluid contents and can provide new insights into rapidly changing, two-phase and three-phase flow systems. Application of the LTM as a visualization technique for environmental and physical phenomena is noted. Visualization by LTM of groundwater remediation by surfactants as well as visualization of model cluster growth and fractal dimensions was also explored.


Assuntos
Processamento de Imagem Assistida por Computador , Síncrotrons , Poluentes da Água , Raios X , Calibragem , Saúde , Humanos , Luz , Reprodutibilidade dos Testes , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA