Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 13(1): 7361, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147322

RESUMO

Viral infection of phytoplankton is a pervasive mechanism of cell death and bloom termination, which leads to the production of dissolved and colloidal organic matter that can be aerosolized into the atmosphere. Earth-observing satellites can track the growth and death of phytoplankton blooms on weekly time scales but the impact of viral infection on the cloud forming potential of associated aerosols is largely unknown. Here, we determine the influence of viral-derived organic matter, purified viruses, and marine hydrogels on the cloud condensation nuclei activity of their aerosolized solutions, compared to organic exudates from healthy phytoplankton. Dissolved organic material derived from exponentially growing and infected cells of well-characterized eukaryotic phytoplankton host-virus systems, including viruses from diatoms, coccolithophores and chlorophytes, was concentrated, desalted, and nebulized to form aerosol particles composed of primarily of organic matter. Aerosols from infected phytoplankton cultures resulted in an increase in critical activation diameter and average molar mass in three out of five combinations evaluated, along with a decrease in organic kappa (hygroscopicity) compared to healthy cultures and seawater controls. The infected samples also displayed evidence of increased surface tension depression at realistic cloud water vapor supersaturations. Amending the samples with xanthan gum to simulate marine hydrogels increased variability in organic kappa and surface tension in aerosols with high organic to salt ratios. Our findings suggest that the pulses of increased dissolved organic matter associated with viral infection in surface waters may increase the molar mass of dissolved organic compounds relative to surface waters occupied by healthy phytoplankton or low phytoplankton biomass.


Assuntos
Fitoplâncton , Viroses , Humanos , Fitoplâncton/metabolismo , Molhabilidade , Atmosfera , Água do Mar , Aerossóis
2.
ISME J ; 17(7): 1074-1088, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156837

RESUMO

Marine phytoplankton are a diverse group of photoautotrophic organisms and key mediators in the global carbon cycle. Phytoplankton physiology and biomass accumulation are closely tied to mixed layer depth, but the intracellular metabolic pathways activated in response to changes in mixed layer depth remain less explored. Here, metatranscriptomics was used to characterize the phytoplankton community response to a mixed layer shallowing (from 233 to 5 m) over the course of two days during the late spring in the Northwest Atlantic. Most phytoplankton genera downregulated core photosynthesis, carbon storage, and carbon fixation genes as the system transitioned from a deep to a shallow mixed layer and shifted towards catabolism of stored carbon supportive of rapid cell growth. In contrast, phytoplankton genera exhibited divergent transcriptional patterns for photosystem light harvesting complex genes during this transition. Active virus infection, taken as the ratio of virus to host transcripts, increased in the Bacillariophyta (diatom) phylum and decreased in the Chlorophyta (green algae) phylum upon mixed layer shallowing. A conceptual model is proposed to provide ecophysiological context for our findings, in which integrated light limitation and lower division rates during transient deep mixing are hypothesized to disrupt resource-driven, oscillating transcript levels related to photosynthesis, carbon fixation, and carbon storage. Our findings highlight shared and unique transcriptional response strategies within phytoplankton communities acclimating to the dynamic light environment associated with transient deep mixing and shallowing events during the annual North Atlantic bloom.


Assuntos
Clorófitas , Diatomáceas , Fitoplâncton/metabolismo , Carbono/metabolismo , Fotossíntese
3.
PLoS One ; 18(7): e0288114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418487

RESUMO

Viral lysis of phytoplankton is one of the most common forms of death on Earth. Building on an assay used extensively to assess rates of phytoplankton loss to predation by grazers, lysis rates are increasingly quantified through dilution-based techniques. In this approach, dilution of viruses and hosts are expected to reduce infection rates and thus increase host net growth rates (i.e., accumulation rates). The difference between diluted and undiluted host growth rates is interpreted as a measurable proxy for the rate of viral lytic death. These assays are usually conducted in volumes ≥ 1 L. To increase throughput, we implemented a miniaturized, high-throughput, high-replication, flow cytometric microplate dilution assay to measure viral lysis in environmental samples sourced from a suburban pond and the North Atlantic Ocean. The most notable outcome we observed was a decline in phytoplankton densities that was exacerbated by dilution, instead of the increased growth rates expected from lowered virus-phytoplankton encounters. We sought to explain this counterintuitive outcome using theoretical, environmental, and experimental analyses. Our study shows that, while die-offs could be partly explained by a 'plate effect' due to small incubation volumes and cells adhering to walls, the declines in phytoplankton densities are not volume-dependent. Rather, they are driven by many density- and physiology-dependent effects of dilution on predation pressure, nutrient limitation, and growth, all of which violate the original assumptions of dilution assays. As these effects are volume-independent, these processes likely occur in all dilution assays that our analyses show to be remarkably sensitive to dilution-altered phytoplankton growth and insensitive to actual predation pressure. Incorporating altered growth as well as predation, we present a logical framework that categorizes locations by the relative dominance of these mechanisms, with general applicability to dilution-based assays.


Assuntos
Comportamento Predatório , Vírus , Animais , Fitoplâncton , Oceano Atlântico , Lagoas
4.
Nat Commun ; 12(1): 6634, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789722

RESUMO

Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.


Assuntos
Fitoplâncton/fisiologia , Fitoplâncton/virologia , Água do Mar/microbiologia , Oceano Atlântico , Biomassa , Eutrofização , Estações do Ano , Água do Mar/química , Estresse Fisiológico , Fenômenos Fisiológicos Virais
5.
Nat Commun ; 11(1): 4626, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934228

RESUMO

The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus-host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host-virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host-virus densities.


Assuntos
Haptófitas/virologia , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Haptófitas/fisiologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , Virulência
6.
Rev Esp Cir Ortop Traumatol ; 60(1): 12-9, 2016.
Artigo em Espanhol | MEDLINE | ID: mdl-26386681

RESUMO

OBJECTIVES: The aim of this study was to assess the relationship between arterial cannulations and the development of limb length discrepancies in childhood or impaired growth of the proximal femur. MATERIAL AND METHODS: A retrospective study was conducted on 300 children who required arterial cannulation and/or cardiac catheterisation during childhood in relation to congenital heart diseases. Seven of these patients were referred from the Paediatric Cardiology clinic due to a limb length discrepancy and/or proximal femoral deformities. RESULTS: Seven children, with a mean age of 10 years, were referred to our clinic. The mean length discrepancy was 2.7cm, and was more frequent on the right side. Three of the patients presented with proximal femoral deformities: two cases of caput valgum and one of bilateral physeal arrest of the greater trochanter. All children were initially treated with a shoe lift in the shortest limb. One of them required a tibial lengthening and two others are awaiting a similar procedure. CONCLUSION: We recommend clinical and radiological follow-up of patients who have undergone catheterisation during their infancy due to the relationship between these techniques and the risk of developing a limb length discrepancy.


Assuntos
Cateterismo Cardíaco/efeitos adversos , Cateterismo Periférico/efeitos adversos , Fêmur/crescimento & desenvolvimento , Cardiopatias Congênitas/terapia , Desigualdade de Membros Inferiores/etiologia , Adolescente , Artérias , Alongamento Ósseo , Criança , Feminino , Seguimentos , Órtoses do Pé , Humanos , Desigualdade de Membros Inferiores/diagnóstico , Desigualdade de Membros Inferiores/terapia , Masculino , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA