Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1427: 99-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322340

RESUMO

Coronary heart disease (CHD) is a prevalent cardiovascular disease characterized by coronary artery blood flow reductions caused by lipid deposition and oxidation within the coronary arteries. Dyslipidemia is associated with local tissue damage by oxidative stress/inflammation and carotid bodies (CB) peripheral chemoreceptors are heavily modulated by both reactive oxygen species and pro-inflammatory molecules (i.e., cytokines). Despite this, it is not know whether CB-mediated chemoreflex drive may be affected in CHD. In the present study, we evaluated peripheral CB-mediated chemoreflex drive, cardiac autonomic function, and the incidence of breathing disorders in a murine model of CHD. Compared to age-matched control mice, CHD mice showed enhanced CB-chemoreflex drive (twofold increase in the hypoxic ventilatory response), cardiac sympathoexcitation, and irregular breathing disorders. Remarkably, all these were closely linked to the enhanced CB-mediated chemoreflex drive. Our results showed that mice with CHD displayed an enhanced CB chemoreflex, sympathoexcitation, and disordered breathing and suggest that CBs may be involved in chronic cardiorespiratory alterations in the setting of CHD.


Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Camundongos , Animais , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Coração , Sistema Nervoso Autônomo , Hipóxia
2.
Biol Res ; 54(1): 43, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952651

RESUMO

BACKGROUND: Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K+) supplemented diets showed promising results in normalizing RAS axis and autonomic dysfunction in vascular diseases, lowering cardiovascular risk. Whether subtle increases in dietary K+ consumption may exert similar effects in CHF has not been previously tested. Accordingly, we aimed to evaluate the effects of dietary K+ supplementation on cardiorespiratory alterations in rats with CHF. METHODS: Adult male Sprague-Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K+ diet (CHF+K+ group) for 6 weeks. Cardiac arrhythmogenesis, sympathetic outflow, baroreflex sensitivity, breathing disorders, chemoreflex function, respiratory-cardiovascular coupling and cardiac function were evaluated. RESULTS: Compared to normal chow diet, K+ supplemented diet in CHF significantly reduced arrhythmia incidence (67.8 ± 15.1 vs. 31.0 ± 3.7 events/hour, CHF vs. CHF+K+), decreased cardiac sympathetic tone (ΔHR to propranolol: - 97.4 ± 9.4 vs. - 60.8 ± 8.3 bpm, CHF vs. CHF+K+), restored baroreflex function and attenuated irregular breathing patterns. Additionally, supplementation of the diet with K+ restores normal central respiratory chemoreflex drive and abrogates pathological cardio-respiratory coupling in CHF rats being the outcome an improved cardiac function. CONCLUSION: Our findings support that dietary K+ supplementation in non-ischemic CHF alleviate cardiorespiratory dysfunction.


Assuntos
Insuficiência Cardíaca , Animais , Dieta , Coração , Masculino , Potássio , Ratos , Ratos Sprague-Dawley
3.
J Physiol ; 598(1): 33-59, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31671478

RESUMO

Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Inflamação/fisiopatologia , Idoso , Animais , Humanos , Sistema Renina-Angiotensina , Disfunção Ventricular Esquerda
4.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L27-L40, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617729

RESUMO

Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats. Radiotelemetry transmitters were implanted for continuous monitoring of blood pressure and heart rate. After recovering from surgery, conscious unrestrained rats were exposed to episodic hypercapnic stimulation [EHS; 10 cycles/5 min, inspiratory fraction of carbon dioxide (FICO2) 7%] in a whole body plethysmograph for recording of cardiorespiratory function. To determine the contribution of CC to cardiorespiratory variables, selective ablation of chemoreceptor neurons within the retrotrapezoid nucleus (RTN) was performed via injection of saporin toxin conjugated to substance P (SSP-SAP). Vehicle-treated rats (HF+Veh and Sham+Veh) were used as controls for SSP-SAP experiments. Sixty minutes post-EHS, minute ventilation was depressed in sham animals relative to HF animals (ΔV̇e: -5.55 ± 2.10 vs. 1.24 ± 1.35 mL/min 100 g, P < 0.05; Sham+Veh vs. HF+Veh). Furthermore, EHS resulted in autonomic imbalance, cardiorespiratory entrainment, and ventilatory disturbances in HF+Veh but not Sham+Veh rats, and these effects were significantly attenuated by SSP-SAP treatment. Also, the apnea-hypopnea index (AHI) was significantly lower in HF+SSP-SAP rats compared with HF+Veh rats (AHI: 5.5 ± 0.8 vs. 14.4 ± 1.3 events/h, HF+SSP-SAP vs. HF+Veh, respectively, P < 0.05). Finally, EHS-induced respiratory-cardiovascular coupling in HF rats depends on RTN chemoreceptor neurons because it was reduced by SSP-SAP treatment. Overall, EHS triggers ventilatory plasticity and elicits cardiorespiratory abnormalities in HF that are largely dependent on RTN chemoreceptor neurons.


Assuntos
Doenças do Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Células Quimiorreceptoras/metabolismo , Insuficiência Cardíaca/fisiopatologia , Neurônios/fisiologia , Transtornos Respiratórios/fisiopatologia , Animais , Doenças do Sistema Nervoso Autônomo/metabolismo , Pressão Sanguínea/fisiologia , Sistema Nervoso Central/metabolismo , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca/fisiologia , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração , Transtornos Respiratórios/metabolismo
5.
J Physiol ; 597(24): 5799-5820, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31642520

RESUMO

KEY POINTS: A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones. Partial lesion (∼65%) of RVLM-C1 neurones reduces AHI, respiratory variability, and respiratory-cardiovascular coupling in HF rats. In addition, the deleterious effects of central chemoreflex activation on cardiac autonomic balance and cardiac function in HF rats was abolished by ablation of RVLM-C1 neurones. Our findings suggest that RVLM-C1 neurones play a pivotal role in breathing irregularities in volume overload HF, and mediate the sympathetic responses induced by acute central chemoreflex activation. ABSTRACT: Rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) modulate sympathetic outflow and breathing under normal conditions. Heart failure (HF) is characterized by chronic RVLM-C1 activation, increased sympathetic activity and irregular breathing patterns. Despite studies showing a relationship between RVLM-C1 and sympathetic activity in HF, no studies have addressed a potential contribution of RVLM-C1 neurones to irregular breathing in this context. Thus, the aim of this study was to determine the contribution of RVLM-C1 neurones to irregular breathing patterns in HF. Sprague-Dawley rats underwent surgery to induce volume overload HF. Anti-dopamine ß-hydroxylase-saporin toxin (DßH-SAP) was used to selectively lesion RVLM-C1 neurones. At 8 weeks post-HF induction, breathing pattern, blood pressures (BP), respiratory-cardiovascular coupling (RCC), central chemoreflex function, cardiac autonomic control and cardiac function were studied. Reduction (∼65%) of RVLM-C1 neurones resulted in attenuation of irregular breathing, decreased apnoea-hypopnoea incidence (11.1 ± 2.9 vs. 6.5 ± 2.5 events h-1 ; HF+Veh vs. HF+DßH-SAP; P < 0.05) and improved cardiac autonomic control in HF rats. Pathological RCC was observed in HF rats (peak coherence >0.5 between breathing and cardiovascular signals) and was attenuated by DßH-SAP treatment (coherence: 0.74 ± 0.12 vs. 0.54 ± 0.10, HF+Veh vs. HF+DßH-SAP rats; P < 0.05). Central chemoreflex activation had deleterious effects on cardiac function and cardiac autonomic control in HF rats that were abolished by lesion of RVLM-C1 neurones. Our findings reveal that RVLM-C1 neurones play a major role in irregular breathing patterns observed in volume overload HF and highlight their contribution to cardiac dysautonomia and deterioration of cardiac function during chemoreflex activation.


Assuntos
Catecolaminas/metabolismo , Insuficiência Cardíaca/fisiopatologia , Bulbo/metabolismo , Neurônios/fisiologia , Respiração , Animais , Masculino , Bulbo/citologia , Bulbo/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo , Saporinas/toxicidade
6.
Clin Sci (Lond) ; 133(3): 393-405, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30626730

RESUMO

Activation of the sympathetic nervous system is a hallmark of heart failure (HF) and is positively correlated with disease progression. Catecholaminergic (C1) neurons located in the rostral ventrolateral medulla (RVLM) are known to modulate sympathetic outflow and are hyperactivated in volume overload HF. However, there is no conclusive evidence showing a contribution of RVLM-C1 neurons to the development of cardiac dysfunction in the setting of HF. Therefore, the aim of this study was to determine the role of RVLM-C1 neurons in cardiac autonomic control and deterioration of cardiac function in HF rats. A surgical arteriovenous shunt was created in adult male Sprague-Dawley rats to induce HF. RVLM-C1 neurons were selectively ablated using cell-specific immunotoxin (dopamine-ß hydroxylase saporin [DßH-SAP]) and measures of cardiac autonomic tone, function, and arrhythmia incidence were evaluated. Cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction were present in HF rats and improved after DßH-SAP toxin treatment. Most importantly, the progressive decline in fractional shortening observed in HF rats was reduced by DßH-SAP toxin. Our results unveil a pivotal role played by RVLM-C1 neurons in cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction in volume overload-induced HF.


Assuntos
Tronco Encefálico/citologia , Insuficiência Cardíaca/fisiopatologia , Coração/fisiologia , Neurônios/fisiologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Tronco Encefálico/fisiopatologia , Humanos , Masculino , Bulbo/citologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiopatologia
7.
Biol Res ; 52(1): 55, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601259

RESUMO

BACKGROUND: Epanorin (EP) is a secondary metabolite of the Acarospora lichenic species. EP has been found in lichenic extracts with antimicrobial activity, and UV-absorption properties have been described for closely related molecules; however, its antiproliferative activity in cancer cells has not yet been explored. It has been hypothesized that EP inhibits cancer cell growth. MCF-7 breast cancer cells, normal fibroblasts, and the non-transformed HEK-293 cell line were exposed to increasing concentrations of EP, and proliferation was assessed by the sulforhodamine-B assay. RESULTS: MCF-7 cells exposed to EP were examined for cell cycle progression using flow cytometry, and DNA fragmentation was examined using the TUNEL assay. In addition, EP's mutagenic activity was assessed using the Salmonella typhimurium reverse mutation assay. The data showed that EP inhibits proliferation of MCF-7 cells, and it induces cell cycle arrest in G0/G1 through a DNA fragmentation-independent mechanism. Furthermore, EP's lack of overt cytotoxicity in the normal cell line HEK-293 and human fibroblasts in cell culture is supported by the absence of mutagenic activity of EP. CONCLUSION: EP emerges as a suitable molecule for further studies as a potential antineoplastic agent.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Líquens/química , Antineoplásicos/isolamento & purificação , Fragmentação do DNA , Feminino , Citometria de Fluxo , Humanos , Células MCF-7
8.
Am J Physiol Heart Circ Physiol ; 314(3): H464-H474, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167119

RESUMO

Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Células Quimiorreceptoras/metabolismo , Terapia por Exercício/métodos , Tolerância ao Exercício , Insuficiência Cardíaca/terapia , Coração/inervação , Músculo Esquelético/inervação , Reflexo , Volume Sistólico , Animais , Metabolismo Energético , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Contração Muscular , Músculo Esquelético/metabolismo , Recuperação de Função Fisiológica , Resultado do Tratamento
9.
Eur J Clin Pharmacol ; 74(7): 945-951, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29589063

RESUMO

AIM: The aim of our study was to study the pattern of prescription of direct-acting oral anticoagulants (DOACs) according to the French recommendations. METHODS: We performed a cross-sectional study using anonymous data of patients covered by the French National Health Insurance information system (SNIIRAM) from 1 January 2010 to 31 December 2013 in the area of Midi-Pyrénées (southwest of France). RESULTS: Of the 355,608 patients identified, 325,216 (91.5%) were included, of whom 22,142 received at least one DOAC. About 39.1% (8,652 patients) had DOAC in an orthopedic indication, 46.5% (10,303 patients) in a cardiac indication, and 16.1% (3568 patients) in an indeterminate indication. Overall, guidelines were largely followed as for renal function monitoring, prescribing in orthopedic indications, in cardiac indications in patients aged 80 years and older, and in the case of concomitant use of verapamil. However, inappropriate prescriptions were observed for cardiac indications, and for dosage adjustments in orthopedic indications, with respect to both the age of patients (75 years and older) and those taking verapamil or amiodarone concomitantly. Guidelines were more followed in women and patients aged 80 or more. CONCLUSIONS: Among patients receiving DOACs, 58% were exposed to a prescription falling outside the guidelines. This study on DOAC prescription patterns revealed insufficiencies in the compliance with the French guidelines in certain indications.


Assuntos
Anticoagulantes/uso terapêutico , Uso de Medicamentos/estatística & dados numéricos , Adolescente , Adulto , Idoso , Feminino , França , Humanos , Prescrição Inadequada/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Padrões de Prática Médica/estatística & dados numéricos , Adulto Jovem
10.
Adv Exp Med Biol ; 1071: 61-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357734

RESUMO

The carotid body (CB) is the main arterial chemoreceptor involved in oxygen sensing. Upon hypoxic stimulation, CB chemoreceptor cells release neurotransmitters, which increase the frequency of action potentials in sensory nerve fibers of the carotid sinus nerve. The identity of the molecular entity responsible for oxygen sensing is still a matter of debate; however several ion channels have been shown to be involved in this process. Connexin-based ion channels are expressed in the CB; however a definitive role for these channels in mediating CB oxygen sensitivity has not been established. To address the role of these channels, we studied the effect of blockers of connexin-based ion channels on oxygen sensitivity of the CB. A connexin43 (Cx43) hemichannel blocking agent (CHBa) was applied topically to the CB and the CB-mediated hypoxic ventilatory response (FiO2 21, 15, 10 and 5%) was measured in adult male Sprague-Dawley rats (~250 g). In normoxic conditions, CHBa had no effect on tidal volume or respiratory rate, however Cx43 hemichannels inhibition by CHBa significantly impaired the CB-mediated chemoreflex response to hypoxia. CHBa reduced both the gain of the hypoxic ventilatory response (HVR) and the maximum HVR by ~25% and ~50%, respectively. Our results suggest that connexin43 hemichannels contribute to the CB chemoreflex response to hypoxia in rats. Our results suggest that CB connexin43 hemichannels may be pharmacological targets in disease conditions characterized by CB hyperactivity.


Assuntos
Corpo Carotídeo/fisiologia , Conexina 43/antagonistas & inibidores , Hipóxia , Animais , Conexina 43/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Physiol ; 595(8): 2479-2495, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28181258

RESUMO

KEY POINTS: Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho-vagal imbalance. Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood. We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre-sympathetic regions of the brainstem. Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho-vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF. ABSTRACT: Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho-vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague-Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho-vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h-1 ), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HFHRV )] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8 ± 21.7 events h-1 ). Furthermore, HFpEF rats showed increase central chemoreflex sensitivity but not peripheral chemosensitivity. Accordingly, hypercapnic stimulation in HFpEF rats exacerbated increases in sympathetic outflow to the heart (229.6 ± 43.2% vs. 296.0 ± 43.9% LF/HFHRV , normoxia vs. hypercapnia, respectively), incidence of cardiac arrhythmias (196.0 ± 239.9 vs. 576.7 ± 472.9 events h-1 ) and diastolic dysfunction (0.008 ± 0.004 vs. 0.027 ± 0.027 mmHg µl-1 ). Importantly, the cardiovascular consequences of central chemoreflex activation were related to sympathoexcitation since these effects were abolished by propranolol. The present results show that the central chemoreflex is enhanced in HFpEF and that acute activation of central chemoreceptors leads to increases of cardiac sympathetic outflow, cardiac arrhythmogenesis and impairment in cardiac function in rats with HFpEF.


Assuntos
Células Quimiorreceptoras/fisiologia , Diástole/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hipercapnia/fisiopatologia , Volume Sistólico/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca/fisiologia , Hipercapnia/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
12.
Biochem Cell Biol ; 95(1): 82-90, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28165283

RESUMO

Giardia intestinalis is the most common infectious protozoan parasite in children. Despite the effectiveness of some drugs, the disease remains a major worldwide problem. Consequently, the search for new treatments is important for disease eradication. Biological molecules with antimicrobial properties represent a promising alternative to combat pathogens. Bovine lactoferrin (bLF) is a key component of the innate host defense system, and its peptides have exhibited strong antimicrobial activity. Based on these properties, we evaluated the parasiticidal activity of these peptides on G. intestinalis. Trophozoites were incubated with different peptide concentrations for different periods of time, and the growth or viability was determined by carboxyfluorescein-succinimidyl-diacetate-ester (CFDA) and propidium iodide (PI) staining. Endocytosis of peptides was investigated by confocal microscopy, damage was analyzed by transmission and scanning electron microscopy, and the type of programmed cell death was analyzed by flow cytometry. Our results showed that the LF peptides had giardicidal activity. The LF peptides interacted with G. intestinalis and exposure to LF peptides correlated with an increase in the granularity and vacuolization of the cytoplasm. Additionally, the formation of pores, extensive membrane disruption, and programmed cell death was observed in trophozoites treated with LF peptides. Our results demonstrate that LF peptides exhibit potent in vitro antigiardial activity.


Assuntos
Anti-Infecciosos/farmacologia , Giardia lamblia/efeitos dos fármacos , Giardíase/tratamento farmacológico , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Trofozoítos/efeitos dos fármacos , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Fezes/parasitologia , Giardia lamblia/crescimento & desenvolvimento , Giardia lamblia/isolamento & purificação , Giardíase/parasitologia , Humanos
14.
Phytochem Anal ; 28(5): 433-438, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28543801

RESUMO

INTRODUCTION: Pomegranate-husk is the main by-product generated from the pomegranate industry. It is a potential source of compounds highly appreciated by different costumers. Punicalagin is the main compound present in pomegranate-husk. OBJECTIVE: To characterise the pomegranate-husk total polyphenols by HPLC-ESI-MS and to establish a method for the recovery of punicalagin using a medium pressure liquid chromatography (MPLC) system. MATERIALS AND METHODS: The characterisation of total pomegranate-husk polyphenols was carried out using liquid chromatography coupled to mass spectrometry. Thus, 200 mg of pomegranate-husk polyphenols were fractionated by MPLC. The isolated punicalagin was characterised by HPLC-MS and was tested as standard reagent for the measurement of its scavenging capacity reducing DPPH and ABTS radicals. RESULTS: Twenty peaks were identified by analytical HPLC-MS analysis from the pomegranate-husk polyphenols. The main compounds were the punicalagin anomers, punicalin and ellagic acid. The MPLC method allowed three fractions to be obtained. In fraction three 39.40 ± 8.06 mg of punicalagin anomers (purity > 97.9%) were recovered. The scavenging capacity of punicalagin showed an IC50 of 109.53 and 151.50 µg/mL for DPPH and ABTS radicals, respectively. CONCLUSION: The MPLC system was an excellent tool for the separation of the main ellagitannins from pomegranate husk and for the isolation of punicalagin anomers. Fraction three was rich in high purity punicalagin anomers. The IC50 was obtained for DPPH and ABTS radicals. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Ácido Elágico/isolamento & purificação , Taninos Hidrolisáveis/isolamento & purificação , Lythraceae/química , Polifenóis/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
15.
Redox Biol ; 69: 102992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142585

RESUMO

AIMS: In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O2.-) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases. Despite, the contribution of SOD2 on O2.- regulation on central chemoreceptor function is unknown. Accordingly, we sought to determine the impact of partial deletion of SOD2 expression on i) O2.-accumulation in the RTN, ii) central ventilatory chemoreflex function, and iii) disordered-breathing. Finally, we study cellular localization of SOD2 in the RTN of healthy mice. METHODS: Central chemoreflex drive and breathing function were assessed in freely moving heterozygous SOD2 knockout mice (SOD2+/- mice) and age-matched control wild type (WT) mice by whole-body plethysmography. O2.- levels were determined in RTN brainstem sections and brain isolated mitochondria, while SOD2 protein expression and tissue localization were determined by immunoblot, RNAseq and immunofluorescent staining, respectively. RESULTS: Our results showed that SOD2+/- mice displayed reductions in SOD2 levels and high O2.- formation and mitochondrial dysfunction within the RTN compared to WT. Additionally, SOD2+/- mice displayed a heightened ventilatory response to hypercapnia and exhibited overt signs of altered breathing patterns. Both, RNAseq analysis and immunofluorescence co-localization studies showed that SOD2 expression was confined to RTN astrocytes but not to RTN chemoreceptor neurons. Finally, we found that SOD2+/- mice displayed alterations in RTN astrocyte morphology compared to RTN astrocytes from WT mice. INNOVATION & CONCLUSION: These findings provide first evidence of the role of SOD2 in the regulation of O2.- levels in the RTN and its potential contribution on the regulation of central chemoreflex function. Our results suggest that reductions in the expression of SOD2 in the brain may contribute to increase O2.- levels in the RTN being the outcome a chronic surge in central chemoreflex drive and the development/maintenance of altered breathing patterns. Overall, dysregulation of SOD2 and the resulting increase in O2.- levels in brainstem respiratory areas can disrupt normal respiratory control mechanisms and contribute to breathing dysfunction seen in certain disease conditions characterized by high oxidative stress.


Assuntos
Hipercapnia , Respiração , Superóxido Dismutase , Camundongos , Animais , Hipercapnia/metabolismo , Células Quimiorreceptoras/metabolismo , Mamíferos
16.
Parasite ; 31: 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315066

RESUMO

In this study, we aimed to develop a comprehensive methodology for identifying amino acid polymorphisms in acetylcholinesterase transcript 2 (AChE2) in acaricide-resistant Rhipicephalus microplus ticks. This included assessing AChE2 expression levels through qPCR and conducting 3D modeling to evaluate the interaction between acaricides and AChE2 using docking techniques. The study produced significant results, demonstrating that acaricide-resistant R. microplus ticks exhibit significantly higher levels of AChE expression than susceptible reference ticks. In terms of amino acid sequence, we identified 9 radical amino acid substitutions in AChE2 from acaricide-resistant ticks, when compared to the gene sequence of the susceptible reference strain. To further understand the implications of these substitutions, we utilized 3D acaricide-AChE2 docking modeling to examine the interaction between the acaricide and the AChE2 catalytic site. Our models suggest that these amino acid polymorphisms alter the configuration of the binding pocket, thereby contributing to differences in acaricide interactions and ultimately providing insights into the acaricide-resistance phenomenon in R. microplus.


Title: Relations entre la résistance aux acaricides et les polymorphismes du gène de l'acétylcholinestérase chez la tique du bétail Rhipicephalus microplus. Abstract: Notre étude vise à développer une méthodologie complète pour identifier les polymorphismes d'acides aminés dans le transcrit 2 de l'acétylcholinestérase (AChE2) chez les tiques Rhipicephalus microplus résistantes aux acaricides. Cela comprend l'évaluation des niveaux d'expression d'AChE2 via qPCR et la réalisation d'une modélisation 3D pour évaluer l'interaction entre les acaricides et l'AChE2 à l'aide de techniques d'amarrage moléculaire. L'étude a produit des résultats significatifs, démontrant que les tiques R. microplus résistantes aux acaricides présentent des niveaux d'expression d'AChE significativement plus élevés que les tiques sensibles de référence. En termes de séquence d'acides aminés, nous avons identifié 9 substitutions d'acides aminés dans AChE2 provenant de tiques résistantes aux acaricides par rapport à la séquence génétique de la souche sensible de référence. Pour mieux comprendre les implications de ces substitutions, nous avons utilisé la modélisation de l'amarrage acaricide-AChE2 pour examiner l'interaction entre l'acaricide et le site catalytique AChE2. Nos modèles suggèrent que ces polymorphismes d'acides aminés modifient la configuration de la poche de liaison, contribuant ainsi aux différences dans les interactions acaricides et fournissant finalement un aperçu du phénomène de résistance aux acaricides chez R. microplus.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Acaricidas/farmacologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Rhipicephalus/genética , Rhipicephalus/metabolismo , Resistência a Medicamentos/genética , Polimorfismo Genético , Aminoácidos/genética , Infestações por Carrapato/veterinária
17.
Microorganisms ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543602

RESUMO

Rhipicephalus microplus is a persistent ectoparasite of cattle that causes bovine anaplasmosis and babesiosis, causing economic losses worldwide. Chemical treatment is the primary method for tick control, but the emergence of pesticide-resistant ticks is a major challenge. Alternative biocontrol strategies utilizing entomopathogenic microorganisms are being explored. This study aimed to validate the species identification and assess the efficacy of four strains of Staphylococcus bacteria (S. shinii S1 and S-2, S. succinus, and S. xylosus) previously reported as being entomopathogenic to R. microplus ticks. According to the bioassays, S. shinii S-1 exhibited the greatest degree of reproductive inhibition (47%), followed by S. succinus (44.3%) at a concentration of 1 × 108 cfu/mL. S. xylosus displayed decreased reproductive inhibition (6.3%). In an additional bioassay, S. shinii S-1 exhibited a significant larval mortality of 67.63%, followed by S. succinus with 66.75%, S. shinni S-2 with 64.61%, and S. xylosus with 28.18% mortality. The common signs of infection observed on these ticks included swelling, yellowish exudate on the hypostome, and reduced limb mobility and color change, except for S. succinus, which did not cause color changes. These bacteria were naturally found on bovine skin. However, further studies are needed to confirm their potential as promising alternatives or complementary agents to existing acaricidal compounds.

18.
Front Biosci (Landmark Ed) ; 29(6): 238, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38940045

RESUMO

BACKGROUND: Hormone receptors exert their function through binding with their ligands, which results in cellular signaling activation mediated by genomic or non-genomic mechanisms. The intrinsic molecular communication of tick Rhipicephalus microplus and its host Bos taurus comprises an endocrine regulation involving hormones. In the present study, we performed a molecular and in silico analysis of a Membrane Associated Progesterone Receptor in R. microplus (RmMAPRC). METHODS: The RmMAPRC protein sequence was analyzed with bioinformatics tools, and its structure was characterized by three-dimensional (3D) modeling and molecular docking. A semi-quantitative reverse transcription and polymerase chain reaction (sqRT-PCR) assessed the RmMAPRC gene presence and relative expression in tick organs and embryonic cells. RESULTS: RmMAPRC relative expression in salivary glands, ovaries, and embryonic cells showed overexpression of 3%, 13%, and 24%, respectively. Bioinformatic analysis revealed that RmMAPRC corresponded to a Progesterone Receptor Membrane Component 1 (RmPGRMC1) of ~23.7 kDa, with an N-terminal transmembrane domain and a C-terminal Cytochrome b5-like heme/steroid binding domain. The docking results suggest that RmPGRMC1 could bind to progesterone (P4), some progestins, and P4 antagonists. The phylogenetic reconstruction showed that Rhipicephalus spp. MAPRC receptors were clustered in a clade that includes R. appendiculatus, R. sanguineus, and R. microplus (RmMAPRC), and mammals and helminths MAPRC receptors clustered in two separated clades away from ticks. CONCLUSIONS: The presence of RmPGRMC1 highlights the importance of transregulation as a conserved adaptive mechanism that has succeeded for arthropod parasites, making it a target for tick control.


Assuntos
Progesterona , Receptores de Progesterona , Rhipicephalus , Animais , Rhipicephalus/metabolismo , Rhipicephalus/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Progesterona/metabolismo , Bovinos , Simulação de Acoplamento Molecular , Interações Hospedeiro-Parasita , Feminino , Sequência de Aminoácidos , Ligação Proteica , Filogenia
19.
Pathogens ; 12(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887771

RESUMO

The expression of the Fasciola hepatica carboxylesterase type B (CestB) gene is known to be induced upon exposure to the anthelmintic triclabendazole (TCBZ), leading to a substantial rise in enzyme-specific activity. Furthermore, the nucleotide sequence of the CestB gene displays variations that can potentially result in radical amino acid substitutions at the ligand binding site. These substitutions hold the potential to impact both the ligand-protein interaction and the catalytic properties of the enzyme. Thus, the objective of our study was to identify novel CestB polymorphisms in TCBZ-resistant parasites and field isolates obtained from a highly endemic region in Central Mexico. Additionally, we aimed to assess these amino acid polymorphisms using 3D modeling against the metabolically oxidized form of the anthelmintic TCBZSOX. Our goal was to observe the formation of TCBZSOX-specific binding pockets that might provide insights into the role of CestB in the mechanism of anthelmintic resistance. We identified polymorphisms in TCBZ-resistant parasites that exhibited three radical amino acid substitutions at positions 147, 215, and 263. These substitutions resulted in the formation of a TCBZSOX-affinity pocket with the potential to bind the anthelmintic drug. Furthermore, our 3D modeling analysis revealed that these amino acid substitutions also influenced the configuration of the CestB catalytic site, leading to alterations in the enzyme's interaction with chromogenic carboxylic ester substrates and potentially affecting its catalytic properties. However, it is important to note that the TCBZSOX-binding pocket, while significant for drug binding, was located separate from the enzyme's catalytic site, rendering enzymatic hydrolysis of TCBZSOX impossible. Nonetheless, the observed increased affinity for the anthelmintic may provide an explanation for a drug sequestration type of anthelmintic resistance. These findings lay the groundwork for the future development of a molecular diagnostic tool to identify anthelmintic resistance in F. hepatica.

20.
Front Vet Sci ; 10: 1225873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808115

RESUMO

The discovery of new targets for preventing bovine anaplasmosis has moved away from focusing on proteins that have already been extensively studied in Anaplasma marginale, including the Major Surface Proteins, Outer Membrane Proteins, and Type IV Secretion System proteins. An alternative is moonlighting or multifunctional proteins, capable of performing various biological functions within various cellular compartments. There are several reports on the role of moonlighting proteins as virulence factors in various microorganisms. Moreover, it is known that about 25% of all moonlighting is involved in the virulence of pathogens. In this work, for the first time, we present the identification of three enolase proteins (AmEno01, AmEno15, and AmEno31) in the genome of Mexican strains of A. marginale. Using bioinformatics tools, we predicted the catalytic domains, enolase signature, and amino acids binding magnesium ion of the catalytic domain and performed a phylogenetic reconstruction. In addition, by molecular docking analysis, we found that AmEno01 would bind to erythrocyte proteins spectrin, ankyrin, and stomatin. This adhesion function has been reported for enolases from other pathogens. It is considered a promising target since blocking this function would impede the fundamental adhesion process that facilitates the infection of erythrocytes. Additionally, molecular docking predicts that AmEno01 could bind to extracellular matrix protein fibronectin, which would be significant if we consider that some proteins with fibronectin domains are localized in tick gut cells and used as an adhesion strategy to gather bacteria before traveling to salivary glands. Derived from the molecular docking analysis of AmEno01, we hypothesized that enolases could be proteins driven by the pathogen and redirected at the expense of the pathogen's needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA