RESUMO
The distinction between noncancerous and cancerous breast tissues is challenging in clinical settings, and discovering new proteomics-based biomarkers remains underexplored. Through a pilot proteomic study (discovery cohort), we aimed to identify a protein signature indicative of breast cancer for subsequent validation using six published proteomics/transcriptomics data sets (validation cohorts). Sequential window acquisition of all theoretical (SWATH)-based mass spectrometry revealed 370 differentially abundant proteins between noncancerous tissue and breast cancer. Protein-protein interaction-based networks and enrichment analyses revealed dysregulation in pathways associated with extracellular matrix organization, platelet degranulation, the innate immune system, and RNA metabolism in breast cancer. Through multivariate unsupervised analysis, we identified a four-protein signature (OGN, LUM, DCN, and COL14A1) capable of distinguishing breast cancer. This dysregulation pattern was consistently verified across diverse proteomics and transcriptomics data sets. Dysregulation magnitude was notably higher in poor-prognosis breast cancer subtypes like Basal-Like and HER2 compared to Luminal A. Diagnostic evaluation (receiver operating characteristic (ROC) curves) of the signature in distinguishing breast cancer from noncancerous tissue revealed area under the curve (AUC) ranging from 0.87 to 0.9 with predictive accuracy of 80% to 82%. Upon stratifying, to solely include the Basal-Like/Triple-Negative subtype, the ROC AUC increased to 0.922-0.959 with predictive accuracy of 84.2%-89%. These findings suggest a potential role for the identified signature in distinguishing cancerous from noncancerous breast tissue, offering insights into enhancing diagnostic accuracy.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteômica , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Mapas de Interação de Proteínas , Mama/metabolismo , Mama/patologia , Curva ROC , Projetos PilotoRESUMO
Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy worldwide. Molecular classifications have tried to improve cure rates. We prospectively examined and correlated the mutational landscape with the clinical features and outcomes of 185 Mexican patients (median age 59.3 years, 50% women) with newly diagnosed DLBCL. A customized panel of 79 genes was designed, based on previous international series. Most patients had ECOG performance status (PS) < 2 (69.2%), advanced-stage disease (72.4%), germinal-center phenotype (68.1%), and double-hit lymphomas (14.1%). One hundred and ten (59.5%) patients had at least one gene with driver mutations. The most common mutated genes were as follows: TP53, EZH2, CREBBP, NOTCH1, and KMT2D. The median follow-up was 42 months, and the 5-year relapse-free survival (RFS) and overall survival (OS) rates were 70% and 72%, respectively. In the multivariate analysis, both age > 50 years and ECOG PS > 2 were significantly associated with a worse OS. Our investigation did not reveal any discernible correlation between the presence of a specific mutation and survival. In conclusion, using a customized panel, we characterized the mutational landscape of a large cohort of Mexican DLBCL patients. These results need to be confirmed in further studies.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Linfoma Difuso de Grandes Células B , Mutação , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Feminino , Pessoa de Meia-Idade , Masculino , México/epidemiologia , Idoso , Adulto , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Idoso de 80 Anos ou mais , Estudos Prospectivos , Receptor Notch1/genética , Proteína de Ligação a CREB/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Neoplasias/genética , Adulto Jovem , Prognóstico , Adolescente , Proteínas de Ligação a DNARESUMO
lncRNAs are noncoding transcripts with tissue and cancer specificity. Particularly, in breast cancer, lncRNAs exhibit subtype-specific expression; they are particularly upregulated in luminal tumors. However, no gene signature-based laboratory tests have been developed for luminal breast cancer identification or the differential diagnosis of luminal tumors, since no luminal A- or B-specific genes have been identified. Particularly, luminal B patients are of clinical interest, since they have the most variable response to neoadjuvant treatment; thus, it is necessary to develop diagnostic and predictive biomarkers for these patients to optimize treatment decision-making and improve treatment quality. In this study, we analyzed the lncRNA expression profiles of breast cancer cell lines and patient tumor samples from RNA-Seq data to identify an lncRNA signature specific for luminal phenotypes. We identified an lncRNA signature consisting of LINC01016, GATA3-AS1, MAPT-IT1, and DSCAM-AS1 that exhibits luminal subtype-specific expression; among these lncRNAs, GATA3-AS1 is associated with the presence of residual disease (Wilcoxon test, p < 0.05), which is related to neoadjuvant chemotherapy resistance in luminal B breast cancer patients. Furthermore, analysis of GATA3-AS1 expression using RNA in situ hybridization (RNA ISH) demonstrated that this lncRNA is detectable in histological slides. Similar to estrogen receptors and Ki67, both commonly detected biomarkers, GATA3-AS1 proves to be a suitable predictive biomarker for clinical application in breast cancer laboratory tests.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Terapia Neoadjuvante , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , TranscriptomaRESUMO
Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents the most common subtype of breast cancer associated with the worst outcomes. Identifying the genes associated with chemoresistance is crucial for understanding the underlying mechanisms and discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant patients. We further validated eight highly correlated genes associated with resistance. Among these, solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4), both implicated in ion transport, showed the strongest association with chemoresistance. Notably, SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4), encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to overcome chemoresistance.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana Transportadoras , Terapia Neoadjuvante , Estudos Retrospectivos , Membro 1 da Família 12 de Carreador de SolutoRESUMO
Bladder cancer (BC) is the most common neoplasm of the urinary tract, which originates in the epithelium that covers the inner surface of the bladder. The molecular BC profile has led to the development of different classifications of non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). However, the genomic BC landscape profile of the Mexican population, including NMIBC and MIBC, is unknown. In this study, we aimed to identify somatic single nucleotide variants (SNVs) and copy number variations (CNVs) in Mexican patients with BC and their associations with clinical and pathological characteristics. We retrospectively evaluated 37 patients treated between 2012 and 2021 at the National Cancer Institute-Mexico (INCan). DNA samples were obtained from paraffin-embedded tumor tissues and exome sequenced. Strelka2 and Lancet packages were used to identify SNVs and insertions or deletions. FACETS was used to determine CNVs. We found a high frequency of mutations in TP53 and KMT2D, gains in 11q15.5 and 19p13.11-q12, and losses in 7q11.23. STAG2 mutations and 1q11.23 deletions were also associated with NMIBC and low histologic grade.
Assuntos
Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA , Proteínas de Neoplasias , Neoplasias da Bexiga Urinária , Humanos , México , Mutação , Invasividade Neoplásica , Estudos Retrospectivos , Neoplasias da Bexiga Urinária/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Neoplasias/genéticaRESUMO
DNA methylation is an epigenetic mark that living beings have used in different environments. The MTases family catalyzes DNA methylation. This process is conserved from archaea to eukaryotes, from fertilization to every stage of development, and from the early stages of cancer to metastasis. The family of DNMTs has been classified into DNMT1, DNMT2, and DNMT3. Each DNMT has been duplicated or deleted, having consequences on DNMT structure and cellular function, resulting in a conserved evolutionary reaction of DNA methylation. DNMTs are conserved in the five kingdoms of life: bacteria, protists, fungi, plants, and animals. The importance of DNMTs in whether methylate or not has a historical adaptation that in mammals has been discovered in complex regulatory mechanisms to develop another padlock to genomic insurance stability. The regulatory mechanisms that control DNMTs expression are involved in a diversity of cell phenotypes and are associated with pathologies transcription deregulation. This work focused on DNA methyltransferases, their biology, functions, and new inhibitory mechanisms reported. We also discuss different approaches to inhibit DNMTs, the use of non-coding RNAs and nucleoside chemical compounds in recent studies, and their importance in biological, clinical, and industry research.
Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Animais , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Eucariotos/genética , Mamíferos/metabolismoRESUMO
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.
Assuntos
Proteínas Cromossômicas não Histona , Histonas , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose/genética , Processamento de Proteína Pós-TraducionalRESUMO
Some pediatric patients with cryptorchidism preserve cells with gonocyte characteristics beyond their differentiation period, which could support the theory of the gonocyte as a target for malignancy in the development of testicular neoplasia. One of the key molecules in gonocyte malignancy is represented by microRNAs (miRNAs). The goal of this review is to give an overview of miRNAs, a class of small non-coding RNAs that participate in the regulation of gene expression. We also aim to review the crucial role of several miRNAs that have been further described in the regulation of gonocyte differentiation to spermatogonia, which, when transformed, could give rise to germ cell neoplasia in situ, a precursor lesion to testicular germ cell tumors. Finally, the potential use of miRNAs as diagnostic and prognostic biomarkers in testicular neoplasia is addressed, due to their specificity and sensitivity compared to conventional markers, as well as their applications in therapeutics.
Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Biomarcadores/metabolismo , Criança , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Espermatogônias/metabolismo , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismoRESUMO
Alterations in DNA methylation are critical for the carcinogenesis of ovarian tumors, especially ovarian carcinoma (OC). DNMT3B, a de novo DNA methyltransferase (DNMT), encodes for fifteen spliced protein products or isoforms. DNMT3B isoforms lack exons for the catalytic domain, with functional consequences on catalytic activity. Abnormal expression of DNMT3B isoforms is frequently observed in several types of cancer, such as breast, lung, kidney, gastric, liver, skin, leukemia, and sarcoma. However, the expression patterns and consequences of DNMT3B isoforms in OC are unknown. In this study, we analyzed each DNMT and DNMT3B isoforms expression by qPCR in 63 OC samples and their association with disease-free survival (DFS), overall survival (OS), and tumor progression. We included OC patients with the main histological subtypes of EOC and patients in all the disease stages and found that DNMTs were overexpressed in advanced stages (p-value < 0.05) and high-grade OC (p-value < 0.05). Remarkably, we found DNMT3B1 overexpression in advanced stages (p-value = 0.0251) and high-grade serous ovarian carcinoma (HGSOC) (p-value = 0.0313), and DNMT3B3 was overexpressed in advanced stages (p-value = 0.0098) and high-grade (p-value = 0.0004) serous ovarian carcinoma (SOC). Finally, we observed that overexpression of DNMT3B isoforms was associated with poor prognosis in OC and SOC. DNMT3B3 was also associated with FDS (p-value = 0.017) and OS (p-value = 0.038) in SOC patients. In addition, the ovarian carcinoma cell lines OVCAR3 and SKOV3 also overexpress DNMT3B3. Interestingly, exogenous overexpression of DNMT3B3 in OVCAR3 causes demethylation of satellite 2 sequences in the pericentromeric region. In summary, our results suggest that DNMT3B3 expression is altered in OC.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Metilação de DNA , Apoptose , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Carcinoma Epitelial do Ovário/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , DNA/metabolismo , DNA Metiltransferase 3BRESUMO
PURPOSE: Increasingly epidemiological evidence supports that environmental factors are associated with breast cancer (BC) outcomes after a BC diagnosis. Although evidence suggests that air pollution exposure is associated with higher mortality in women with BC, studies investigating potential mechanisms have been lacking. METHODS: We evaluated women with BC (N = 151) attended at the National Cancer Institute-Mexico from 2012 to 2015. We calculated 1-year average exposures to particulate matter < 2.5 µm (PM2.5) at home address before diagnosis. We used linear and logistic regression models to determine the associations between PM2.5 exposure and BC aggressiveness (tumor size, molecular phenotype). RESULTS: Average annual PM2.5 exposure of this population was 23.0 µg/m3 [standard deviation (SD)]: 1.90 µg/m3]. PM2.5 levels were positively correlated with tumor size at diagnosis (r = 0.22; p = 0.007). Multivariable linear models had a similar inference [risk ratio (RR): 1.32; 95% confidence interval (95% CI): 1.04, 1.674]. We did not observe differences in this association by age or menopause status. Further, women with triple-negative BC (TNBC) had significantly higher PM2.5 levels compared with other phenotypes (p = 0.015). Multivariable-adjusted logistic regression models assessing the association between PM2.5 and tumor size had a similar inference (RR 1.41; 95% CI 1.05, 1.89) overall for all ages and also for women who were ≤ 50 years old at diagnosis (RR 1.63; 95% CI 1.036, 2.57). CONCLUSIONS: Our findings suggest a significant association between long-term PM2.5 exposure and BC aggressiveness based on tumor size and phenotype, as well as a worse outcome.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias da Mama , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Humanos , México , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Material Particulado/análiseRESUMO
BACKGROUND: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. OBJECTIVE: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. METHODS: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. RESULTS: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. CONCLUSIONS: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.
Assuntos
Adenocarcinoma/genética , Proteínas de Ciclo Celular/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Adenocarcinoma/mortalidade , Adolescente , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/mortalidade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto JovemRESUMO
BACKGROUND: Ovarian cancer is the most lethal gynecologic cancer. Although most patients respond adequately to the first-line therapy, up to 85% experience a recurrence of disease, which carries a poor prognosis. Mitotic arrest deficiency 1 is a protein that helps in the assembly of the mitotic spindle assembly checkpoint by preventing anaphase until all chromatids are properly aligned. A single-nucleotide polymorphism in the MAD1L1 gene is prevalent in patients with advanced epithelial ovarian cancer and alters the way in which it responds to chemotherapy. OBJECTIVE: The objective of the study was to study the relationship between the rs1801368 polymorphism of MAD1L1 and prognosis of ovarian adenocarcinoma. METHODS: A total of 118 patients in whom the MAD1L1 gene was sequenced were analyzed using descriptive and comparative statistics. RESULTS: Patients carrying the wild-type genotype had a higher distribution of early-stage disease. Having a MAD1L1 polymorphic allele increased the risk of being non-sensitive to chemotherapy. The median disease-free survival for patients with the wild-type MAD1L1 was 46.93 months, compared to 10.4 months for patients with at least one polymorphic allele. CONCLUSIONS: The rs1801368 polymorphism of MAD1L1 gene worsens prognosis in patients with ovarian adenocarcinoma. Traditional therapy for ovarian cancer might not be optimal in patients carrying this polymorphism.
RESUMO
BACKGROUND: Heterozygous germline TP53 gene mutations result in Li-Fraumeni Syndrome (LFS). Breast cancer (BC) is the most frequent tumor in young women with LFS. An important issue related to BC in the Mexican population is the average age at diagnosis, which is approximately 11 years younger than that of patients in the United States (U.S.) and Europe. The aim of this study was to determine the prevalence of germline mutations in TP53 among young Mexican BC patients. METHODS: We searched for germline mutations in the TP53 gene using targeted next-generation sequencing (NGS) in 78 BC patients younger than 45 years old (yo) who tested negative for BRCA1/2 mutations. A group of 509 Mexican women aged 45yo or older without personal or family BC history (parents/grandparents) was used as a control. RESULTS: We identified five patients with pathogenic variants in the TP53 gene, equivalent to 6.4% (5/78). Among patients diagnosed at age 36 or younger, 9.4% (5/55) had pathogenic TP53 mutations. Three of these variants were missense mutations (c.844C > T, c.517G > A, and c.604C > T), and the other two mutations were frameshifts (c.291delC and c.273dupC) and had not been reported previously. We also identified a variant of uncertain clinical significance (VUS), c.672G > A, which causes a putative splice donor site mutation. All patients with TP53 mutations had high-grade and HER2-positive tumors. None of the 509 patients in the healthy control group had mutations in TP53. CONCLUSIONS: Among Mexican BC patients diagnosed at a young age, we identified a high proportion with germline mutations in the TP53 gene. All patients with the TP53 mutations had a family history suggestive of LFS. To establish the clinical significance of the VUS found, additional studies are needed. Pathogenic variants of TP53 may explain a substantial fraction of BC in young women in the Mexican population. Importantly, none of these mutations or other pathological variants in TP53 were found in the healthy control group.
Assuntos
Neoplasias da Mama/genética , Genes p53/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Adulto , Fatores Etários , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Estudos de Associação Genética , Variação Genética , Humanos , Síndrome de Li-Fraumeni/epidemiologia , Síndrome de Li-Fraumeni/genética , México/epidemiologia , Linhagem , Prevalência , Adulto JovemRESUMO
BACKGROUND: Pancreatic adenocarcinoma (PAC) is a health problem because of high lethality, increasing incidence and the absence of an early diagnosis. Biopsy by fine needle aspiration guided by endoscopic ultrasound has allowed obtaining tissue for cytopathological analysis, but there are several problems with their interpretation. We aimed to compare the diagnostic performance of the cytopathological analysis with the addition of either an immunohistochemical (IHC) panel or the KRAS mutation for the diagnosis of PAC. METHODS: We evaluated 62 pancreatic lesions by fine needle aspiration guided by endoscopic ultrasound, applying an IHC panel with mucin (MUC)-1, MUC4, carcinoembryonic antigen (CEA) and p53. All cases also had a KRAS mutation determination. Three cytopathologists blinded to clinical data and the KRAS status reviewed the cytology independently. We calculated diagnostic performances for the cytology alone, cytology+IHC and cytology+KRAS to show the best method to diagnose PAC. RESULTS: From 62 samples, 50 (80.6%) were PAC and 12 benign lesions. The cytopathological analysis correctly interpreted 26 malignant and 12 non-neoplastic cases (sensitivity 52%, specificity 100% and diagnostic accuracy 61.3%). The KRAS mutation was present in 88% of PAC. The cytology+ KRAS mutation increased the sensitivity by 10% and the diagnostic accuracy by 8%. The sensitivity increased by 2% adding either MUC1 or CEA to the cytology, and the diagnostic accuracy by 10 or 18%, respectively. CONCLUSION: The addition of IHC either with CEA or MUC1 improved the diagnostic performance of the cytology alone to diagnose PAC. The cytology + IHC evaluation was superior to the cytology + KRAS mutation to diagnose PAC.
Assuntos
Antígeno Carcinoembrionário/metabolismo , Citodiagnóstico , Mucina-1/metabolismo , Mutação/genética , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Adulto , Biópsia por Agulha Fina , Endoscopia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Pâncreas/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias PancreáticasRESUMO
BACKGROUND: Cytarabine (Ara-C) is the primary drug in different treatment schemas for acute myeloid leukemia (AML) and requires the human equilibrative nucleoside transporter (hENT1) to enter cells. The deoxycytidine kinase (dCK) enzyme limits its activation rate. Therefore, decreased expression levels of these genes may influence the response rate to this drug. METHODS: AML patients without previous treatment were enrolled. The expression of hENT1 and dCK genes was analyzed using RT-PCR. Clinical parameters were registered. All patients received Ara-C + doxorubicin as an induction regimen (7 + 3 schema). Descriptive statistics were used to analyze data. Uni- and multivariate analyses were performed to determine factors that influenced response and survival. RESULTS: Twenty-eight patients were included from January 2011 until December 2012. Median age was 36.5 years. All patients had an adequate performance status (43% with ECOG 1 and 57% with ECOG 2). Cytogenetic risk was considered unfavorable in 54% of the patients. Complete response was achieved in 53.8%. Cox regression analysis showed that a higher hENT1 expression level was the only factor that influenced response and survival. CONCLUSIONS: These results highly suggest that the pharmacogenetic analyses of Ara-C influx may be decisive in AML patients.
Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Citarabina/uso terapêutico , Desoxicitidina Quinase/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Adolescente , Adulto , Idoso , Desoxicitidina Quinase/metabolismo , Doxorrubicina/uso terapêutico , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Feminino , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Taxa de Sobrevida , Resultado do Tratamento , Adulto JovemRESUMO
Hepatocellular carcinoma (HCC) has very poor prognosis. Astemizole has gained great interest as a potential anticancer drug because it targets several proteins involved in cancer including the Eag1 (ether à-go-go-1) potassium channel that is overexpressed in human HCC. Eag1 channels are regulated by cancer etiological factors and have been proposed as early tumor markers. Here, we found that HepG2 and HuH-7 HCC cells displayed Eag1 messenger RNA (mRNA) and protein expression, determined by real-time RT-PCR and immunochemistry, respectively. Astemizole inhibited human HCC cell proliferation (assessed by metabolic activity assay) and induced apoptosis (studied with flow cytometry) in both cell lines. The subcellular Eag1 protein localization was modified by astemizole in the HepG2 cells. The treatment with astemizole prevented diethylnitrosamine (DEN)-induced rat HCC development in vivo (followed by studying γ-glutamyl transpeptidase (GGT) activity). The Eag1 mRNA and protein levels were increased in most DEN-treated groups but decreased after astemizole treatment. GGT activity was decreased by astemizole. The Eag1 protein was detected in cirrhotic and dysplastic rat livers. Astemizole might have clinical utility for HCC prevention and treatment, and Eag1 channels may be potential early HCC biomarkers. These data provide significant basis to include astemizole in HCC clinical trials.
Assuntos
Astemizol/administração & dosagem , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Canais de Potássio Éter-A-Go-Go/biossíntese , Neoplasias Hepáticas/genética , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Dietilnitrosamina/administração & dosagem , Canais de Potássio Éter-A-Go-Go/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Estadiamento de Neoplasias , Prognóstico , Ratos , gama-Glutamiltransferase/biossínteseRESUMO
High-risk human papillomaviruses (HR-HPVs) are the causative agents of cervical cancer, and they are also associated with a subset of head and neck squamous cell carcinomas. In addition, HPVs have also been postulated in the development of non-melanoma skin cancers (NMSC). In these cancers, the oncogene E6 is best known for its ability to inactivate the tumor suppressor p53 protein. Interestingly, in transgenic mice for HPV16 E6 (K14E6), it was reported that E6 alone induced epithelial hyperplasia and delay in differentiation in skin epidermis independently of p53 inactivation. Transforming growth factor ß (TGFß) is an important regulator of cell growth/differentiation and apoptosis, and this pathway is often lost during tumorigenesis. Ultraviolet radiation B (UVB) exposure activates diverse cellular responses, including DNA damage and apoptosis. In this study, we investigated whether the E6 oncogene alone or in combination with UVB dysregulate some components of the TGFß pathway in the epidermis of K14E6 mice. We used 8-day-old K14E6 and non-transgenic mice irradiated and unirradiated with a single dose of UVB. We found that the E6 oncogene and UVB irradiation impair the TGFß pathway in epidermis of K14E6 mice by downregulation of the TGFß type II receptor (TßRII). This loss of TßRII prevents downstream activation of Smad2 and target genes as p15, an important regulator of cell cycle progression. In summary, the TGFß signalling in cells of the epidermis is downregulated in our mouse model by both the E6 oncoprotein and the UVB irradiation.
Assuntos
Epiderme/efeitos da radiação , Proteínas Oncogênicas Virais/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/efeitos da radiação , Raios Ultravioleta , Animais , Apoptose/efeitos da radiação , Dano ao DNA/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Epiderme/metabolismo , Epiderme/patologia , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas Virais/metabolismo , Fosforilação , Proteínas Repressoras/metabolismo , Proteína Smad2 , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/efeitos da radiaçãoRESUMO
We have studied the expression of the tight junction proteins (TJ) occludin, claudin-1 and ZO-2 in the epidermis of female mice. We observed a peak of expression of these proteins at postnatal day 7 and a decrease in 6 week-old mice to values similar to those found in newborn animals. We explored if the expression of the E6 oncoprotein from high-risk human papilloma virus type 16 (HPV16) in the skin of transgenic female mice (K14E6), altered TJ protein expression in a manner sensitive to ovarian hormones. We observed that in ovariectomized mice E6 up-regulates the expression of occludin and ZO-2 in the epidermis and that this effect was canceled by 17ß-estradiol. Progesterone instead induced occludin and ZO-2 over-expression. However, the decreased expression of occludin and ZO-2 induced by 17ß-estradiol in the epidermis was not overturned by E6 or progesterone. In addition, we employed MDCK cells transfected with E6, and observed that ZO-2 delocalizes from TJs and accumulates in the cell nuclei due to a decrease in the turnover rate of the protein. These results reinforce the view of 17ß-estradiol and E6 as risk factors for the development of cancer through effects on expression and mislocalization of TJ proteins.
Assuntos
Claudina-1/metabolismo , Epiderme/metabolismo , Ocludina/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Regulação para Cima , Proteína da Zônula de Oclusão-2/metabolismo , Animais , Claudina-1/genética , Cães , Estradiol/deficiência , Feminino , Células Madin Darby de Rim Canino , Camundongos , Camundongos Transgênicos , Ocludina/genética , Proteínas Oncogênicas Virais/genética , Ovariectomia , Progesterona/deficiência , Proteínas Repressoras/genética , Transcrição Gênica , Proteína da Zônula de Oclusão-2/genéticaRESUMO
Lin28A is an oncoprotein overexpressed in several cancer types such as testicular, ovarian, colon, breast and lung cancers. As a pluripotency factor that promotes tumorigenesis, Lin28A is associated with more undifferentiated and aggressive tumors phenotypes. Moreover, Lin28A is a highly stable protein that is difficult to downregulate. The compound resveratrol (RSV) has anticancer effects. The present study aimed to elucidate the mechanisms underlying the downregulation of Lin28A protein expression by RSV in the NCCIT cell line. NCCIT cells were treated with different concentrations of RSV to investigate its effects on Lin28A expression. The mRNA expression levels of Lin28A and ubiquitin-specific protease 28 (USP28) were assessed using reverse transcription-quantitative PCR. Western blot analysis was employed to evaluate the protein levels of Lin28A, USP28 and phosphorylated Lin28A. In addition, in some experiments, cells were treated with a MAPK/ERK pathway inhibitor, and other experiments involved transfecting cells with small interfering RNAs targeting USP28. The results demonstrated that RSV significantly reduced Lin28A expression by destabilizing the protein; this effect was mediated by the ability of RSV to suppress the expression of USP28, a deubiquitinase that normally protects Lin28A from ubiquitination and degradation. Additionally, RSV inhibited phosphorylation of Lin28A via the MAPK/ERK pathway; this phosphorylation event has previously been shown to enhance the stability of Lin28A by increasing its half-life. This resulted in Lin28A degradation through the proteasomal pathway in NCCIT cells. The results provide further evidence of the anticancer activity of RSV, and identified Lin28A and USP28 as promising therapeutic targets. As a stable oncoprotein, downregulating Lin28A expression is challenging. However, the present study demonstrated that RSV can overcome this hurdle by inhibiting USP28 expression and MAPK/ERK signaling to promote Lin28A degradation. Furthermore, elucidating these mechanisms provides avenues for developing targeted cancer therapies.
RESUMO
Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.