Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488018

RESUMO

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Zigoto/metabolismo , Ciclo Celular/genética , Polaridade Celular/genética , Embrião não Mamífero/metabolismo
2.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129004

RESUMO

Fluorescent protein (FP) tagging is a key method for observing protein distribution, dynamics and interaction with other proteins in living cells. However, the typical approach using overexpression of tagged proteins can perturb cell behavior and introduce localization artifacts. To preserve native expression, fluorescent proteins can be inserted directly into endogenous genes. This approach has been widely used in yeast for decades, and more recently in invertebrate model organisms with the advent of CRISPR/Cas9. However, endogenous FP tagging has not been widely used in mammalian cells due to inefficient homology-directed repair. Recently, the CRISPaint system used non-homologous end joining for efficient integration of FP tags into native loci, but it only allows C-terminal knock-ins. Here, we have enhanced the CRISPaint system by introducing new universal donors for N-terminal insertion and for multi-color tagging with orthogonal selection markers. We adapted the procedure for mouse embryonic stem cells, which can be differentiated into diverse cell types. Our protocol is rapid and efficient, enabling live imaging in less than 2 weeks post-transfection. These improvements increase the versatility and applicability of FP knock-in in mammalian cells.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Proteínas/genética , Técnicas de Introdução de Genes , Edição de Genes/métodos , Mamíferos/genética
3.
J Biol Chem ; 299(3): 102947, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707051

RESUMO

Animal cells establish polarity via the partitioning-defective protein system. Although the core of this system comprises only four proteins, a huge number of reported interactions between these members has made it difficult to understand how the system is organized and functions at the molecular level. In a recent JBC article, the Prehoda group has succeeded in reconstituting some of these interactions in vitro, resulting in a much clearer and simpler picture of partitioning-defective complex assembly.


Assuntos
Polaridade Celular , Proteínas , Animais , Proteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Biophys J ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38006206

RESUMO

Embryonic development requires the establishment of cell polarity to enable cell fate segregation and tissue morphogenesis. This process is regulated by Par complex proteins, which partition into polarized membrane domains and direct downstream polarized cell behaviors. The kinase aPKC (along with its cofactor Par6) is a key member of this network and can be recruited to the plasma membrane by either the small GTPase Cdc42 or the scaffolding protein Par3. Although in vitro interactions among these proteins are well established, much is still unknown about the complexes they form during development. Here, to enable the study of membrane-associated complexes ex vivo, we used a maleic acid copolymer to rapidly isolate membrane proteins from single C. elegans zygotes into lipid nanodiscs. We show that native lipid nanodisc formation enables detection of endogenous complexes involving Cdc42, which are undetectable when cells are lysed in detergent. We found that Cdc42 interacts more strongly with aPKC/Par6 during polarity maintenance than polarity establishment, two developmental stages that are separated by only a few minutes. We further show that Cdc42 and Par3 do not bind aPKC/Par6 simultaneously, confirming recent in vitro findings in an ex vivo context. Our findings establish a new tool for studying membrane-associated signaling complexes and reveal an unexpected mode of polarity regulation via Cdc42.

5.
Biophys J ; 120(22): 5018-5031, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34653388

RESUMO

Proteins contribute to cell biology by forming dynamic, regulated interactions, and measuring these interactions is a foundational approach in biochemistry. We present a rapid, quantitative in vivo assay for protein-protein interactions, based on optical cell lysis followed by time-resolved single-molecule analysis of protein complex binding to an antibody-coated substrate. We show that our approach has better reproducibility, higher dynamic range, and lower background than previous single-molecule pull-down assays. Furthermore, we demonstrate that by monitoring cellular protein complexes over time after cell lysis, we can measure the dissociation rate constant of a cellular protein complex, providing information about binding affinity and kinetics. Our dynamic single-cell, single-molecule pull-down method thus approaches the biochemical precision that is often sought from in vitro assays while being applicable to native protein complexes isolated from single cells in vivo.


Assuntos
Proteínas , Imagem Individual de Molécula , Cinética , Reprodutibilidade dos Testes
6.
J Biol Chem ; 294(5): 1602-1608, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541924

RESUMO

Cryo-electron microscopy (cryo-EM) has become an indispensable tool for structural studies of biological macromolecules. Two additional predominant methods are available for studying the architectures of multiprotein complexes: 1) single-particle analysis of purified samples and 2) tomography of whole cells or cell sections. The former can produce high-resolution structures but is limited to highly purified samples, whereas the latter can capture proteins in their native state but has a low signal-to-noise ratio and yields lower-resolution structures. Here, we present a simple, adaptable method combining microfluidic single-cell extraction with single-particle analysis by EM to characterize protein complexes from individual Caenorhabditis elegans embryos. Using this approach, we uncover 3D structures of ribosomes directly from single embryo extracts. Moreover, we investigated structural dynamics during development by counting the number of ribosomes per polysome in early and late embryos. This approach has significant potential applications for counting protein complexes and studying protein architectures from single cells in developmental, evolutionary, and disease contexts.


Assuntos
Proteínas de Caenorhabditis elegans/ultraestrutura , Caenorhabditis elegans/embriologia , Embrião não Mamífero/metabolismo , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica/métodos , Ribossomos/ultraestrutura , Análise de Célula Única/métodos , Animais , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/citologia , Modelos Biológicos
7.
Chembiochem ; 19(12): 1319-1325, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29446199

RESUMO

Cellular signal transduction is often regulated at multiple steps to achieve more complex logic or precise control of a pathway. For instance, some signaling mechanisms couple allosteric activation with localization to achieve high signal to noise. Here, we create a system for light-activated nuclear import that incorporates two levels of control. It consists of a nuclear import photoswitch, light-activated nuclear shuttle (LANS), and a protein engineered to preferentially interact with LANS in the dark, Zdk2. First, Zdk2 is tethered to a location in the cytoplasm that sequesters LANS in the dark. Second, LANS incorporates a nuclear localization signal (NLS) that is sterically blocked from binding to the nuclear import machinery in the dark. If activated with light, LANS both dissociates from its tethered location and exposes its NLS, which leads to nuclear accumulation. We demonstrate that this coupled system improves the dynamic range of LANS in mammalian cells, yeast, and Caenorhabditis elegans and provides tighter control of transcription factors that have been fused to LANS.


Assuntos
Optogenética/métodos , Engenharia de Proteínas/métodos , Transporte Ativo do Núcleo Celular , Animais , Caenorhabditis elegans , Células HEK293 , Células HeLa , Humanos , Luz , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas/genética , Proteínas/metabolismo
8.
Nat Methods ; 10(10): 1028-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23995389

RESUMO

Study of the nematode Caenorhabditis elegans has provided important insights in a wide range of fields in biology. The ability to precisely modify genomes is critical to fully realize the utility of model organisms. Here we report a method to edit the C. elegans genome using the clustered, regularly interspersed, short palindromic repeats (CRISPR) RNA-guided Cas9 nuclease and homologous recombination. We demonstrate that Cas9 is able to induce DNA double-strand breaks with specificity for targeted sites and that these breaks can be repaired efficiently by homologous recombination. By supplying engineered homologous repair templates, we generated gfp knock-ins and targeted mutations. Together our results outline a flexible methodology to produce essentially any desired modification in the C. elegans genome quickly and at low cost. This technology is an important addition to the array of genetic techniques already available in this experimentally tractable model organism.


Assuntos
Caenorhabditis elegans/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Helmíntico , Reparo de DNA por Recombinação , Ribonucleases/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Técnicas de Introdução de Genes , Mutação Puntual , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética
9.
Bioessays ; 34(10): 833-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22930590

RESUMO

We hypothesize that aspects of animal multicellularity originated before the divergence of metazoans from fungi and social amoebae. Polarized epithelial tissues are a defining feature of metazoans and contribute to the diversity of animal body plans. The recent finding of a polarized epithelium in the non-metazoan social amoeba Dictyostelium discoideum demonstrates that epithelial tissue is not a unique feature of metazoans, and challenges the traditional paradigm that multicellularity evolved independently in social amoebae and metazoans. An alternative view, presented here, is that the common ancestor of social amoebae, fungi, and animals spent a portion of its life cycle in a multicellular state and possessed molecular machinery necessary for forming an epithelial tissue. Some descendants of this ancestor retained multicellularity, while others reverted to unicellularity. This hypothesis makes testable predictions regarding tissue organization in close relatives of metazoans and provides a novel conceptual framework for studies of early animal evolution.


Assuntos
Polaridade Celular , Dictyostelium/citologia , Células Epiteliais/fisiologia , Animais , Evolução Biológica , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos
10.
Am J Physiol Cell Physiol ; 305(11): C1091-5, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24067914

RESUMO

In Metazoa, a polarized epithelium forms a single-cell-layered barrier that separates the outside from the inside of the organism. In tubular epithelia, the apical side of the cell is constricted relative to the basal side, forming a wedge-shaped cell that can pack into a tube. Apical constriction is mediated by actomyosin activity. In higher animals, apical actomyosin is connected between cells by specialized cell-cell junctions that contain a classical cadherin, the Wnt signaling protein ß-catenin, and the actin-binding protein α-catenin. The molecular mechanisms that lead to selective accumulation of myosin at the apical surface of cells are poorly understood. We found that the nonmetazoan Dictyostelium discoideum forms a polarized epithelium that surrounds the stalk tube at the tip of the multicellular fruiting body. Although D. discoideum lacks a cadherin homolog, it expresses homologs of ß- and α-catenin. Both catenins are essential for formation of the tip epithelium, polarized protein secretion, and proper multicellular morphogenesis. Myosin localizes apically in tip epithelial cells, and it appears that constriction of this epithelial tube is required for proper morphogenesis. Localization of myosin II is controlled by the protein IQGAP1 and its binding partners cortexillins I and II, which function downstream of α- and ß-catenin to exclude myosin from the basolateral cortex and promote apical accumulation of myosin. These studies show that the function of catenins in cell polarity predates the evolution of Wnt signaling and classical cadherins, and that apical localization of myosin is a morphogenetic mechanism conserved from nonmetazoans to vertebrates.


Assuntos
Polaridade Celular/fisiologia , Dictyostelium/fisiologia , Células Epiteliais/fisiologia , Evolução Molecular , Animais , Fenômenos Fisiológicos Celulares/fisiologia , Dictyostelium/citologia , Humanos
11.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034756

RESUMO

During embryonic development, oriented cell divisions are important for patterned tissue growth and cell fate specification. Cell division orientation is controlled in part by asymmetrically localized polarity proteins, which establish functional domains of the cell membrane and interact with microtubule regulators to position the mitotic spindle. For example, in the 8-cell mouse embryo, apical polarity proteins form caps on the outside, contact-free surface of the embryo that position the mitotic spindle to execute asymmetric cell division. A similar radial or "inside-outside" polarity is established at an early stage in many other animal embryos, but in most cases it remains unclear how inside-outside polarity is established and how it influences downstream cell behaviors. Here, we explore inside-outside polarity in C. elegans somatic blastomeres using spatiotemporally controlled protein degradation and live embryo imaging. We show that PAR polarity proteins, which form apical caps at the center of the contact free membrane, localize dynamically during the cell cycle and contribute to spindle orientation and proper cell positioning. Surprisingly, apical PAR-3 can form polarity caps independently of actomyosin flows and the small GTPase CDC-42, and can regulate spindle orientation in cooperation with the key polarity kinase aPKC. Together, our results reveal a role for apical polarity caps in regulating spindle orientation in symmetrically dividing cells and provide novel insights into how these structures are formed.

12.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961467

RESUMO

During asymmetric cell division, coordination of cell polarity and the cell cycle is critical for proper inheritance of cell fate determinants and generation of cellular diversity. In Caenorhabditis elegans (C. elegans), polarity is established in the zygote and is governed by evolutionarily conserved Partitioning defective (PAR) proteins that localize to distinct cortical domains. At the time of polarity establishment, anterior and posterior PARs segregate to opposing cortical domains that specify asymmetric cell fates. Timely establishment of these PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C.elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including no posterior domain, reversed polarity, and excess posterior domains. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system, drug treatments, and high-resolution microscopy, we found that AIR-1 regulates polarity via distinct mechanisms at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent the formation of bipolar domains, while in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together these data clarify the origin of the multiple polarization phenotypes observed in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with the progression of the cell cycle.

13.
Curr Biol ; 33(20): 4312-4329.e6, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37729910

RESUMO

During embryonic development, oriented cell divisions are important for patterned tissue growth and cell fate specification. Cell division orientation is controlled in part by asymmetrically localized polarity proteins, which establish functional domains of the cell membrane and interact with microtubule regulators to position the mitotic spindle. For example, in the 8-cell mouse embryo, apical polarity proteins form caps on the outside, contact-free surface of the embryo that position the mitotic spindle to execute asymmetric cell division. A similar radial or "inside-outside" polarity is established at an early stage in many other animal embryos, but in most cases, it remains unclear how inside-outside polarity is established and how it influences downstream cell behaviors. Here, we explore inside-outside polarity in C. elegans somatic blastomeres using spatiotemporally controlled protein degradation and live embryo imaging. We show that PAR polarity proteins, which form apical caps at the center of the contact-free membrane, localize dynamically during the cell cycle and contribute to spindle orientation and proper cell positioning. Surprisingly, isolated single blastomeres lacking cell contacts are able to break symmetry and form PAR-3/atypical protein kinase C (aPKC) caps. Polarity caps form independently of actomyosin flows and microtubules and can regulate spindle orientation in cooperation with the key polarity kinase aPKC. Together, our results reveal a role for apical polarity caps in regulating spindle orientation in symmetrically dividing cells and provide novel insights into how these structures are formed.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Camundongos , Caenorhabditis elegans/fisiologia , Divisão Celular , Fuso Acromático/metabolismo , Ciclo Celular , Divisão Celular Assimétrica , Polaridade Celular/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo
14.
ACS Nano ; 17(10): 9280-9289, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37017427

RESUMO

Optical tweezers have provided tremendous opportunities for fundamental studies and applications in the life sciences, chemistry, and physics by offering contact-free manipulation of small objects. However, it requires sophisticated real-time imaging and feedback systems for conventional optical tweezers to achieve controlled motion of micro/nanoparticles along textured surfaces, which are required for such applications as high-resolution near-field characterizations of cell membranes with nanoparticles as probes. In addition, most optical tweezers systems are limited to single manipulation modes, restricting their broader applications. Herein, we develop an optothermal platform that enables the multimodal manipulation of micro/nanoparticles along various surfaces. Specifically, we achieve the manipulation of micro/nanoparticles through the synergy between the optical and thermal forces, which arise due to the temperature gradient self-generated by the particles absorbing the light. With a simple control of the laser beam, we achieve five switchable working modes [i.e., tweezing, rotating, rolling (toward), rolling (away), and shooting] for the versatile manipulation of both synthesized particles and biological cells along various substrates. More interestingly, we realize the manipulation of micro/nanoparticles on rough surfaces of live worms and their embryos for localized control of biological functions. By enabling the three-dimensional control of micro/nano-objects along various surfaces, including topologically uneven biological tissues, our multimodal optothermal platform will become a powerful tool in life sciences, nanotechnology, and colloidal sciences.

15.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37746064

RESUMO

L-type voltage-gated calcium channels (VGCCs) regulate calcium influx and excitation-contraction coupling in many types of muscle cells. Thus, VGCC mutations can cause skeletal and cardiac muscle diseases in humans, such as Duchenne muscular dystrophy and Timothy syndrome. To better understand the genetics and native expression of VGCCs, we have chosen to use the microscopic roundworm, C. elegans . The egl-19 locus is the sole L-type VGCC gene and it encodes three distinct isoforms (a, b, and c). Isoform c is curious because the protein is truncated, lacking the transmembrane domains that form the physical calcium channel. In this study, we have characterized egl-19 expression using CRISPR/Cas9 genome editing to 'knock-in' fluorescent tags of differing colors, allowing us to distinguish the expression pattern of each isoform. Not surprisingly, we found that EGL-19 is expressed in all types of muscle. In addition, we provide evidence that the truncated c isoform is expressed. Finally, although we find evidence that specific isoforms can have unique subcellular distributions, we also observed some expression patterns that appear to be artifacts. Overall, our results show interesting patterns of egl-19 expression, but also highlight the need for caution when interpreting expression of reporter genes even when they represent endogenous tags.

16.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37396790

RESUMO

Fluorescent proteins allow the expression of a gene and the behavior of its protein product to be observed in living animals. The ability to create endogenous fluorescent protein tags via CRISPR genome engineering has revolutionized the authenticity of this expression, and mScarlet is currently our first-choice red fluorescent protein (RFP) for visualizing gene expression in vivo . Here, we have cloned versions of mScarlet and split fluorophore mScarlet previously optimized for C. elegans into the SEC-based system of plasmids for CRISPR/Cas9 knock-in. Ideally, an endogenous tag will be easily visible while not interfering with the normal expression and function of the targeted protein. For low molecular weight proteins that are a fraction of the size of a fluorescent protein tag (e.g. GFP or mCherry) and/or proteins known to be non-functional when tagged in this way, split fluorophore tagging could be an alternative. Here, we used CRISPR/Cas9 knock-in to tag three such proteins with split-fluorophore wrmScarlet: HIS-72, EGL-1, and PTL-1. Although we find that split fluorophore tagging does not disrupt the function of any of these proteins, we were unfortunately unable to observe the expression of most of these tags with epifluorescence, suggesting that split fluorophore tags are often very limited as endogenous reporters. Nevertheless, our plasmid toolkit provides a new resource that enables straightforward knock-in of either mScarlet or split mScarlet in C. elegans.

17.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009101

RESUMO

Atypical protein kinase C (aPKC) is a major regulator of cell polarity. Acting in conjunction with Par6, Par3 and the small GTPase Cdc42, aPKC becomes asymmetrically localised and drives the polarisation of cells. aPKC activity is crucial for its own asymmetric localisation, suggesting a hitherto unknown feedback mechanism contributing to polarisation. Here we show in C. elegans zygotes that the feedback relies on CDC-42 phosphorylation at serine 71 by aPKC, which in turn results in aPKC dissociation from CDC-42. The dissociated aPKC then associates with PAR-3 clusters, which are transported anteriorly by actomyosin-based cortical flow. Moreover, the turnover of aPKC-mediated CDC-42 phosphorylation regulates the organisation of the actomyosin cortex that drives aPKC asymmetry. Given the widespread role of aPKC and Cdc42 in cell polarity, this form of self-regulation of aPKC may be vital for the robust polarisation of many cell types.

18.
Cell Rep ; 39(2): 110652, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417695

RESUMO

The actomyosin cortex regulates the localization and function of proteins at the plasma membrane. Here, we study how membrane binding, cortical movements, and diffusion determine membrane protein distribution. In Caenorhabditis elegans zygotes, actomyosin flows transport PAR polarity proteins to establish the anterior-posterior axis. Oligomerization of a key scaffold protein, PAR-3, is required for polarization. PAR-3 oligomers are a heterogeneous population of many different sizes, and it remains unclear how oligomer size affects PAR-3 segregation. To address this question, we engineered PAR-3 to defined sizes. We report that PAR-3 trimers are necessary and sufficient for PAR-3 function during polarization and later embryo development. Quantitative analysis of PAR-3 diffusion shows that a threshold size of three subunits allows PAR-3 clusters to stably bind the membrane, where they are corralled and transported by the actomyosin cortex. Our study provides a quantitative model for size-dependent protein transportation of peripheral membrane proteins by cortical flow.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas Serina-Treonina Quinases , Actomiosina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular/fisiologia , Embrião não Mamífero/metabolismo , Tamanho da Partícula , Proteínas Serina-Treonina Quinases/metabolismo
19.
Methods Mol Biol ; 2438: 59-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35147935

RESUMO

Mapping how proteins form complexes and change binding partners is central to understanding cell signaling. Bulk biochemistry can provide a summary of what complexes are present in a cell, but information about the diversity of individual protein complexes is lost. Here, we describe single-cell , single-molecule pull-down (sc-SiMPull), a TIRF microscopy-based coimmunoprecipitation method, to visualize thousands of individual proteins, their binding partners, and protein complex stoichiometry directly from single-cell lysate. By iterating sc-SiMPull over time, temporal dynamics of protein complexes in response to signaling can be constructed.


Assuntos
Bioquímica , Proteínas , Imunoprecipitação , Microscopia de Fluorescência/métodos
20.
STAR Protoc ; 3(4): 101857, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595905

RESUMO

As live imaging plays an increasingly critical role in cell biology research, the desire to label and track individual protein molecules in vivo has been growing. To address this, in this protocol we describe steps for sparse labeling using two different HaloTag ligand dyes in C. elegans. This labeling approach is simple, is non-invasive, and preserves the view of the bulk protein population. We further describe how to carry out single-particle tracking experiments and extract information about particle diffusion behavior. For complete details on the use and execution of this protocol, please refer to Chang and Dickinson (2022).1.


Assuntos
Caenorhabditis elegans , Proteínas de Membrana , Animais , Proteínas de Membrana/genética , Caenorhabditis elegans/genética , Corantes , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA