Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 17(2): 193-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238015

RESUMO

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Plantas , Aclimatação , Altitude , Ásia , Europa (Continente) , Modelos Lineares , Nova Zelândia , América do Norte , América do Sul
2.
J Insect Sci ; 10: 108, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20874395

RESUMO

The use of morphospecies as surrogates for taxonomic species has been proposed as an alternative to overcome the identification difficulties associated with many invertebrate studies, such as biodiversity surveys. Hymenoptera specimens were collected by beating and pitfall traps, and were separated into morphospecies by a non-specialist with no prior training, and later identified by an expert taxonomist. The number of Hymenoptera morphospecies and taxonomic species was 37 and 42, respectively, representing an underestimation error of 12%. Different families presented varying levels of difficulty, and although the species estimation provided by the use of morphospecies initially appeared to have a relatively minor error rate, this was actually an artefact. Splitting and lumping errors balanced each other out, wrongly suggesting that morphospecies were reasonable surrogates for taxonomic species in the Hymenoptera. The use of morphospecies should be adopted only for selected target groups, which have been assessed as reliable surrogates for taxonomic species beforehand, and some prior training to the non-specialist is likely to be of primary importance.


Assuntos
Himenópteros/classificação , Animais , Biodiversidade , Himenópteros/anatomia & histologia , Nova Zelândia
3.
Ambio ; 44(7): 694-704, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26133152

RESUMO

The Varroa mite (Varroa destructor) is implicated as a major disease factor in honey bee (Apis mellifera) populations worldwide. Honey bees are extensively relied upon for pollination services, and in countries such as New Zealand and Australia where honey bees have been introduced specifically for commercial pollinator services, the economic effects of any decline in honey bee numbers are predicted to be profound. V. destructor established in New Zealand in 2000 but as yet, Australia remains Varroa-free. Here we analyze the history of V. destructor invasion and spread in New Zealand and discuss the likely long-term impacts. When the mite was discovered in New Zealand, it was considered too well established for eradication to be feasible. Despite control efforts, V. destructor has since spread throughout the country. Today, assessing the impacts of the arrival of V. destructor in this country is compromised by a paucity of data on pollinator communities as they existed prior to invasion. Australia's Varroa-free status provides a rare and likely brief window of opportunity for the global bee research community to gain understanding of honey bee-native pollinator community dynamics prior to Varroa invasion.


Assuntos
Agricultura , Abelhas/parasitologia , Espécies Introduzidas , Varroidae/fisiologia , Agricultura/legislação & jurisprudência , Animais , Austrália , Criação de Abelhas/legislação & jurisprudência , Espécies Introduzidas/legislação & jurisprudência , Nova Zelândia , Polinização
4.
PLoS One ; 8(7): e68496, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874645

RESUMO

The recent development of lightweight GPS collars has enabled medium-to-small sized animals to be tracked via GPS telemetry. Evaluation of the performance and accuracy of GPS collars is largely confined to devices designed for large animals for deployment in natural environments. This study aimed to assess the performance of lightweight GPS collars within a suburban environment, which may be different from natural environments in a way that is relevant to satellite signal acquisition. We assessed the effects of vegetation complexity, sky availability (percentage of clear sky not obstructed by natural or artificial features of the environment), proximity to buildings, and satellite geometry on fix success rate (FSR) and location error (LE) for lightweight GPS collars within a suburban environment. Sky availability had the largest affect on FSR, while LE was influenced by sky availability, vegetation complexity, and HDOP (Horizontal Dilution of Precision). Despite the complexity and modified nature of suburban areas, values for FSR (mean= 90.6%) and LE (mean = 30.1 m) obtained within the suburban environment are comparable to those from previous evaluations of GPS collars designed for larger animals and within less built-up environments. Due to fine-scale patchiness of habitat within urban environments, it is recommended that resource selection methods that are not reliant on buffer sizes be utilised for selection studies.


Assuntos
Meio Ambiente , Sistemas de Informação Geográfica/instrumentação , Comunicações Via Satélite/instrumentação , Ecossistema , Humanos , Modelos Teóricos , Nova Zelândia
5.
PLoS One ; 8(3): e58422, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469277

RESUMO

Invasive species are often favoured in fragmented, highly-modified, human-dominated landscapes such as urban areas. Because successful invasive urban adapters can occupy habitat that is quite different from that in their original range, effective management programmes for invasive species in urban areas require an understanding of distribution, habitat and resource requirements at a local scale that is tailored to the fine-scale heterogeneity typical of urban landscapes. The common brushtail possum (Trichosurus vulpecula) is one of New Zealand's most destructive invasive pest species. As brushtail possums traditionally occupy forest habitat, control in New Zealand has focussed on rural and forest habitats, and forest fragments in cities. However, as successful urban adapters, possums may be occupying a wider range of habitats. Here we use site occupancy methods to determine the distribution of brushtail possums across five distinguishable urban habitat types during summer, which is when possums have the greatest impacts on breeding birds. We collected data on possum presence/absence and habitat characteristics, including possible sources of supplementary food (fruit trees, vegetable gardens, compost heaps), and the availability of forest fragments from 150 survey locations. Predictive distribution models constructed using the programme PRESENCE revealed that while occupancy rates were highest in forest fragments, possums were still present across a large proportion of residential habitat with occupancy decreasing as housing density increased and green cover decreased. The presence of supplementary food sources was important in predicting possum occupancy, which may reflect the high nutritional value of these food types. Additionally, occupancy decreased as the proportion of forest fragment decreased, indicating the importance of forest fragments in determining possum distribution. Control operations to protect native birds from possum predation in cities should include well-vegetated residential areas; these modified habitats not only support possums but provide a source for reinvasion of fragments.


Assuntos
Adaptação Biológica , Espécies Introduzidas , Trichosurus/fisiologia , Animais , Ecossistema , Humanos , Nova Zelândia , Dinâmica Populacional , Comportamento Predatório , Estações do Ano , Árvores , Urbanização
6.
PLoS One ; 8(10): e76076, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098423

RESUMO

Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande) taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch) and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Lagartos , Animais , Meio Ambiente , Geografia , Modelos Estatísticos , Nova Zelândia , Dinâmica Populacional , Reprodutibilidade dos Testes
7.
Oecologia ; 144(2): 245-56, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15891822

RESUMO

If snow cover in alpine environments were reduced through climatic warming, plants that are normally protected by snow-lie in winter would become exposed to greater extremes of temperature and solar radiation. We examined the annual course of frost resistance of species of native alpine plants from southern New Zealand that are normally buried in snowbanks over winter (Celmisia haastii and Celmisia prorepens) or in sheltered areas that may accumulate snow (Hebe odora) and other species, typical of more exposed areas, that are relatively snow-free (Celmisia viscosa, Poa colensoi, Dracophyllum muscoides). The frost resistance of these principal species was in accord with habitat: those from snowbanks or sheltered areas showed the least frost resistance, whereas species from exposed areas had greater frost resistance throughout the year. P. colensoi had the greatest frost resistance (-32.5 degrees C). All the principal species showed a rapid increase in frost resistance from summer to early winter (February-June) and maximum frost resistance in winter (July-August). The loss of resistance in late winter to early summer (August-December) was most rapid in P. colensoi and D. muscoides. Seasonal frost resistance of the principal species was more strongly related to daylength than to temperature, although all species except C. viscosa were significantly related to temperature when the influence of daylength was accounted for. Measurements of chlorophyll fluorescence indicated that photosynthetic efficiency of the principal species declined with increasing daylength. Levels of frost resistance of the six principal alpine plant species, and others measured during the growing season, were similar to those measured in tropical alpine areas and somewhat more resistant than those recorded in alpine areas of Europe. The potential for frost damage was greatest in spring. The current relationship of frost resistance with daylength is sufficient to prevent damage at any time of year. While warmer temperatures might lower frost resistance, they would also reduce the incidence of frosts, and the incidence of frost damage is unlikely to be altered. The relationship of frost resistance with daylength and temperature potentially provides a means of predicting the responses of alpine plants in response to global warming.


Assuntos
Adaptação Fisiológica/fisiologia , Efeito Estufa , Fenômenos Fisiológicos Vegetais , Neve , Luz Solar , Temperatura , Altitude , Geografia , Nova Zelândia , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA