Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 18(4): 2519-2524, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29558622

RESUMO

The demand to outperform current technologies pushes scientists to develop novel strategies, which enable the fabrication of materials with exceptional properties. Along this line, lightweight structural materials are of great interest due to their versatile applicability as sensors, catalysts, battery electrodes, and acoustic or mechanical dampers. Here, we report a strategy to design ultralight (ρ = 3 mg/cm3) and hierarchically structured ceramic scaffolds of macroscopic size. Such scaffolds exhibit mechanical reversibility comparable to that of microscopic metamaterials, leading to a macroscopically remarkable dynamic mechanical performance. Upon mechanical loading, these scaffolds show a deformation mechanism similar to polyurethane foams, and this resilience yields ultrahigh damping capacities, tan δ, of up to 0.47.

2.
Adv Sci (Weinh) ; 10(21): e2302103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37162217

RESUMO

Although rolling origami technology has provided convenient access to three-dimensional (3D) microstructure systems, the high yield and scalable construction of complex rolling structures with well-defined geometry without impeding functionality has remained challenging. The straightforward, one-step fabrication that uses external mechanical stress to scroll micrometer thick, flexible planar films with centimeter lateral dimensions into tubular or spiral geometry within a few seconds is demonstrated. The method allows controlling the scrolls' diameter, number of windings and nanostructured surface morphology, and is applicable to a wide range of functional materials. The obtained 3D structures are highly promising for various applications including sensors, actuators, microrobotics, as well as energy storage and electronic devices.

3.
RSC Adv ; 11(3): 1354-1359, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424108

RESUMO

The increasing demand for high energy, sustainable and safer rechargeable electrochemical storage systems for portable devices and electric vehicles can be satisfied by the use of hybrid batteries. Hybrid batteries, such as magnesium-lithium-ion batteries (MLIBs), using a dual-salt electrolyte take advantage of both the fast Li+ intercalation kinetics of lithium-ion batteries (LIBs) and the dendrite-free anode reactions. Here we report the utilization of a binder-free and self-supporting V2O5 nanofiber-based cathode for MLIBs. The V2O5 cathode has a high operating voltage of ∼1.5 V vs. Mg/Mg2+ and achieves storage capacities of up to 386 mA h g-1, accompanied by an energy density of 280 W h kg-1. Additionally, a good cycling stability at 200 mA g-1 over 500 cycles is reached. The structural integrity of the V2O5 cathode is preserved upon cycling. This work demonstrates the suitability of the V2O5 cathode for MLIBs to overcome the limitations of LIBs and MIBs and to meet the future demands of advanced electrochemical storage systems.

4.
Nanomaterials (Basel) ; 10(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019197

RESUMO

Nowadays, research on electrochemical storage systems moves into the direction of post-lithium-ion batteries, such as aluminum-ion batteries, and the exploration of suitable materials for such batteries. Vanadium pentoxide (V2O5) is one of the most promising host materials for the intercalation of multivalent ions. Here, we report on the fabrication of a binder-free and self-supporting V2O5 micrometer-thick paper-like electrode material and its use as the cathode for rechargeable aluminum-ion batteries. The electrical conductivity of the cathode was significantly improved by a novel in-situ and self-limiting copper migration approach into the V2O5 structure. This process takes advantage of the dissolution of Cu by the ionic liquid-based electrolyte, as well as the presence of two different accommodation sites in the nanostructured V2O5 available for aluminum-ions and the migrated Cu. Furthermore, the advanced nanostructured cathode delivered a specific discharge capacity of up to ~170 mAh g-1 and the reversible intercalation of Al3+ for more than 500 cycles with a high Coulomb efficiency reaching nearly 100%. The binder-free concept results in an energy density of 74 Wh kg-1, which shows improved energy density in comparison to the so far published V2O5-based cathodes. Our results provide valuable insights for the future design and development of novel binder-free and self-supporting electrodes for rechargeable multivalent metal-ion batteries associating a high energy density, cycling stability, safety and low cost.

5.
Nanoscale ; 10(33): 15736-15746, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30094430

RESUMO

Owing to their unique layer structure, high aspect ratio and intercalation capability, vanadium pentoxide (V2O5) nanofibers are close-to-ideal building blocks for high performance electrodes for metal-ion batteries. However, thus far investigated electrodes composed of V2O5 nanofibers mostly contain binders and conductive agents, which reduce the electrodes' gravimetric capacity. Here we demonstrate self-supporting V2O5 nanofiber-based films that combine high mechanical flexibility and stability with good electrical conductivity. This has been achieved by suitable adjustment of the nanofiber length, in combination with a suitable humidity controlled post-treatment, to ensure an effective nanofiber interconnection and aging of the films. The optimization of these two parameters allows for an impressive 81%, 184%, and 281% enhancement in Young's modulus, tensile strength and toughness respectively, along with an increase of electrical conductivity by up to 165%. Such films can reach storage capacities of up to 150 mA h g-1 without the support of conductive agents and binders. Our findings provide fundamental design guidelines for advanced binder-free electrode materials, which unite high specific storage capacity, excellent mechanical stability and good intrinsic electrical conductivity - the key to technologically advanced battery performance and lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA