RESUMO
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite's protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including 'avirulent' ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Inflamassomos/imunologia , Interferon gama/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Linfócitos T CD8-Positivos/parasitologia , Feminino , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Protozoários/genética , Toxoplasmose Animal/parasitologia , Vacúolos/imunologia , Vacúolos/metabolismo , Vacúolos/parasitologia , Virulência/imunologiaRESUMO
Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen Coccidioides. Unfortunately, patients are often misdiagnosed with bacterial pneumonia, leading to inappropriate antibiotic treatment. The soil Bacillus subtilis-like species exhibits antagonistic properties against Coccidioides in vitro; however, the antagonistic capabilities of host microbiota against Coccidioides are unexplored. We sought to examine the potential of the tracheal and intestinal microbiomes to inhibit the growth of Coccidioides in vitro. We hypothesized that an uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of Coccidioides, while partial in vitro depletion through antibiotic disk diffusion assays would allow a niche for fungal growth. We observed that the microbiota grown on 2×GYE (GYE) and Columbia colistin and nalidixic acid with 5% sheep's blood agar inhibited the growth of Coccidioides, but microbiota grown on chocolate agar did not. Partial depletion of the microbiota through antibiotic disk diffusion revealed diminished inhibition and comparable growth of Coccidioides to controls. To characterize the bacteria grown and identify potential candidates contributing to the inhibition of Coccidioides, 16S rRNA sequencing was performed on tracheal and intestinal agar cultures and murine lung extracts. We found that the host bacteria likely responsible for this inhibition primarily included Lactobacillus and Staphylococcus. The results of this study demonstrate the potential of the host microbiota to inhibit the growth of Coccidioides in vitro and suggest that an altered microbiome through antibiotic treatment could negatively impact effective fungal clearance and allow a niche for fungal growth in vivo. IMPORTANCE: Coccidioidomycosis is caused by a fungal pathogen that invades the host lungs, causing respiratory distress. In 2019, 20,003 cases of Valley fever were reported to the CDC. However, this number likely vastly underrepresents the true number of Valley fever cases, as many go undetected due to poor testing strategies and a lack of diagnostic models. Valley fever is also often misdiagnosed as bacterial pneumonia, resulting in 60%-80% of patients being treated with antibiotics prior to an accurate diagnosis. Misdiagnosis contributes to a growing problem of antibiotic resistance and antibiotic-induced microbiome dysbiosis; the implications for disease outcomes are currently unknown. About 5%-10% of symptomatic Valley fever patients develop chronic pulmonary disease. Valley fever causes a significant financial burden and a reduced quality of life. Little is known regarding what factors contribute to the development of chronic infections and treatments for the disease are limited.
Assuntos
Coccidioides , Microbioma Gastrointestinal , Traqueia , Animais , Coccidioides/crescimento & desenvolvimento , Coccidioides/efeitos dos fármacos , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Traqueia/microbiologia , Coccidioidomicose/microbiologia , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Feminino , Antibacterianos/farmacologia , RNA Ribossômico 16S/genéticaRESUMO
Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen Coccidioides. Unfortunately, patients are often misdiagnosed with bacterial pneumonia leading to inappropriate antibiotic treatment. Soil bacteria B. subtilis-like species exhibits antagonistic properties against Coccidioides in vitro; however, the antagonistic capabilities of host microbiota against Coccidioides are unexplored. We sought to examine the potential of the tracheal and intestinal microbiomes to inhibit the growth of Coccidioides in vitro. We hypothesized that an uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of Coccidioides while partial in vitro depletion through antibiotic disk diffusion assays would allow a niche for fungal growth. We observed that the microbiota grown on 2xGYE (GYE) and CNA w/ 5% sheep's blood agar (5%SB-CNA) inhibited the growth of Coccidioides, but that grown on chocolate agar does not. Partial depletion of the microbiota through antibiotic disk diffusion revealed that microbiota depletion leads to diminished inhibition and comparable growth of Coccidioides growth to controls. To characterize the bacteria grown and narrow down potential candidates contributing to the inhibition of Coccidioides, 16s rRNA sequencing of tracheal and intestinal agar cultures and murine lung extracts was performed. The identity of host bacteria that may be responsible for this inhibition was revealed. The results of this study demonstrate the potential of the host microbiota to inhibit the growth of Coccidioides in vitro and suggest that an altered microbiome through antibiotic treatment could negatively impact effective fungal clearance and allow a niche for fungal growth in vivo.
RESUMO
Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. The host immune responses that define disease outcome during infection are largely unknown, although T helper responses are required. Adaptive immunity is influenced by innate immunity as antigen-presenting cells activate and educate adaptive responses. Macrophage and dendritic cell (DC) recognition of pathogen surface molecules are critical for Coccidioides clearance. We characterize the broad innate immune responses to Coccidioides by analyzing macrophage and dendritic cell responses to Coccidioides arthroconidia using avirulent, vaccine Coccidioides strain NR-166 (Δcts2/Δard1/Δcts3), developed from parental virulent strain C735. We developed a novel flow cytometry-based method to analyze macrophage phagocytosis to complement traditional image-scoring methods. Our study found that macrophage polarization is blocked at M0 phase and activation reduced, while DCs polarize into proinflammatory DC1s, but not anti-inflammatory DC2, following interaction with Coccidioides. However, DCs exhibit a contact-dependent reduced activation to Coccidioides as defined by co-expression of MHC-II and CD86. In vivo, only modest DC1/DC2 recruitment and activation was observed with avirulent Coccidioides infection. In conclusion, the vaccine Coccidioides strain recruited a mixed DC population in vivo, while in vitro data suggest active innate immune cell inhibition by Coccidioides.
RESUMO
Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. This emerging infectious disease ranges from asymptomatic to pulmonary disease and disseminated infection. Most infections are cleared with little to no medical intervention whereas chronic disease often requires life-long medication with severe impairment in quality of life. It is unclear what differentiates hosts immunity resulting in disease resolution versus chronic infection. Current understanding in mycology-immunology suggests that chronic infection could be due to maladaptive immune responses. Immunosuppressed patients develop more severe disease and mouse studies show adaptive Th1 and Th17 responses are required for clearance. This is supported by heightened immunosuppressive regulatory responses and lowered anti-fungal T helper responses in chronic Coccidioides patients. Diagnosis and prognosis is difficult as symptoms are broad and overlapping with community acquired pneumonia, often resulting in misdiagnosis and delayed treatment. Furthermore, we lack clear biomarkers of disease severity which could aid prognosis for more effective healthcare. As the endemic region grows and population increases in endemic areas, the need to understand Coccidioides infection is becoming urgent. There is a growing effort to identify fungal virulence factors and host immune components that influence fungal immunity and relate these to patient disease outcome and treatment. This review compiles the known immune responses to Coccidioides spp. infection and various related fungal pathogens to provide speculation on Coccidioides immunity.