Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 12(33): 9900-8, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20535408

RESUMO

Avoided level crossing muon spin resonance (ALC-muSR) has been used to study the cyclohexadienyl-type radicals produced by the addition of muonium (Mu) to the discotic liquid crystal HAT6 (2,3,6,7,10,11-hexahexyloxytriphenylene) in the crystalline (Cr) phase, the hexagonal columnar mesophase (Col(h)) and isotropic (I) phase. In the Cr phase unpaired electron spin density can be transferred from the radical to neighboring HAT6 molecules depending on the overlap of their pi-systems and hence on the relative orientation of the triphenylene rings. The two Delta(1) resonances in the ALC-muSR spectra of the Cr phase indicate that the neighboring HAT6 molecules have two preferred orientations with respect to the radical: one which results in negligible spin density transfer and a second where 17% of the unpaired spin density is transferred. The ALC-muSR spectra in Col(h) and I phases are substantially different from those of the Cr phase in that there are two narrow resonances superimposed on an extremely broad and intense resonance. The narrow resonances are due to highly mobile radicals located in the aliphatic region between the columns and the broad resonance is due to radicals incorporated within the columns of HAT6 molecules. The large width and amplitude of this resonance indicates that the radicals within the columns are undergoing rapid electron spin relaxation but the mechanism that causes this relaxation is unknown.

2.
J Phys Chem B ; 113(30): 10135-42, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19719282

RESUMO

Avoided level crossing muon spin resonance (ALC-microSR) spectroscopy has been used to study the four cyclohexadienyl-type radicals produced by the addition of muonium (Mu) to the rodlike liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB). ALC-microSR spectra have been obtained over a wide temperature range in the isotropic, nematic, and crystalline phases. Four Delta0 resonances were observed in the ALC-microSR spectra, from which the methylene proton hyperfine coupling constants (hfcs) of the Mu adducts of 5CB were determined as a function of temperature. The methylene proton hfcs of two of the radicals have unusual temperature dependence in the nematic phase and have smaller values than would be predicted from extrapolating the data in the isotropic phase. We have used the Maier-Saupe theory for rodlike liquid crystals to explain the temperature dependence of the methylene proton hfcs, which results from the ordering of the 5CB molecules, the alignment of the molecules with the external magnetic field, and fluctuations that average the anisotropic hyperfine coupling constants. There are no Delta1 resonances in the ALC-microSR spectra of the nematic phase due to the radicals rotating rapidly around the long molecular axis and fluctuations about the local director. The Delta0 resonances broaden substantially as the temperature is lowered due to the slowing down of the fluctuations, which have an average activation energy of approximately 15.9 kJ mol(-1). Cooling the sample below 275 K stopped the rotation around the long molecular axis and led to the appearance of Delta1 resonances.

3.
J Phys Chem B ; 112(10): 3070-6, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18284230

RESUMO

The muon hyperfine coupling constant (hfc) of the light hydrogen isotope muonium (Mu) was measured in aqueous methanol, NaCl, and KCl solutions with varying concentrations, in deuterated water, and in deuterated methanol. The muon hfc is shown to be sensitive to the size and composition of the primary solvation shell, and the three-dimensional harmonic oscillator model of Roduner et al. (J. Chem. Phys. 1995, 102, 5989) has been modified to account for dependence of the muon hfc on the methanol or salt concentration. The muon hfc of Mu in the aqueous methanol solutions decreases with increasing methanol concentration up to a mole fraction (chiMeOH) of approximately 0.4, above which the muon hfc is approximately constant. The concentration dependence of the muon hfc is due to hydrophobic nature of Mu. It is preferentially solvated by the methyl group of methanol, and the proportion of methanol molecules in the primary solvation shell is greater than that in the bulk solution. Above chiMeOH approximately 0.4, Mu is completely surrounded by methanol. The muon hfc decreases with increasing methanol concentration because more unpaired electron spin density is transferred from Mu to methanol than to water. The unpaired electron spin density is transferred from Mu to the solvent by collisions that stretch one of the solvents bonds. The amount of spin density transferred is likely inversely related to the activation barrier for abstraction from the solvent, which accounts for the larger muon hfc in the deuterated solvents. The muon hfc of Mu in electrolyte solution decreases with increasing concentration of NaCl or KCl. We suggest that the decrease of the muon hfc is due to the amount of spin density transferred from Mu to its surroundings being dependent on the average orientation of the water molecules in the primary solvation shell, which is influenced by both Mu and the ions in solution, and spin density transfer to the ions themselves.

4.
J Phys Chem B ; 111(1): 199-208, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201444

RESUMO

Ordering of solvent molecules in the vicinity of a dipolar free radical affects its hyperfine coupling constants (hfcs). Specifically, it is demonstrated how the variation of the experimental methylene proton and muon hfcs of the muoniated cyclohexadienyl radical in several solvents and solvent mixtures of varying polarity can be accounted for by a dipole-dipole reaction field model that is based on the model of Reddoch and Konishi (J. Chem. Phys. 1979, 70, 2121) which was developed to explain the solvent dependence of the 14N hfc in the di-tert-butyl-nitroxide radical. Ab initio calculations were carried out with the cyclohexadienyl radical in an electric field to model the electric field arising from the electric dipole moments of the surrounding solvent molecules. An extension of the model that includes the dipole-quadrupole interaction can account for the larger hfc in benzene compared with that in octadecane, and it is predicted that the hfc will be proportional to the concentration of quadrupole moments to the 4/3 power. The influence of hydrogen bonding between the radicals' pi electrons and the OH groups of the solvent on the hfcs is also discussed. Comparison with gas-phase data permits a separation of vibrational effects and reveals that approximately 28% of the temperature dependence in water is due to increasing solvent disorder.

6.
Chem Commun (Camb) ; 49(6): 588-90, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23212248

RESUMO

Platinum clusters supported on KL zeolites were characterized by EPR, HRTEM, and EXAFS. Two kinds of hydrogen chemisorption experiments both result in a saturation value of 2.9 hydrogen atoms per platinum atom, significantly more than that reported so far. A hydrogen coverage-dependent cluster restructuring is suggested.

7.
Artigo em Inglês | MEDLINE | ID: mdl-23410346

RESUMO

Avoided level crossing muon spin resonance (ALC-µSR) spectroscopy was used to study radicals produced by the addition of the light hydrogen isotope muonium (Mu) to the discotic liquid crystal (DLC) 2,3,6,7,10,11-hexahexylthiotriphenylene (HHTT). Mu adds to the secondary carbon atoms of HHTT to produce a substituted cyclohexadienyl radical, whose identity was confirmed by comparing the measured hyperfine coupling constants with values obtained from DFT calculations. ALC-µSR spectra were obtained in the isotropic (I), hexagonal columnar (Col(h)), helical (H), and crystalline (Cr) phases. In the I and Col(h) phases the radicals, which are incorporated within the stacks of HHTT molecules as isolated paramagnetic defects, undergo extremely rapid electron spin relaxation, on the order of a hundredfold faster than in the H or Cr phases. The electron spin relaxation rate increases significantly with increasing temperature and appears to be caused by the liquidlike motion within the columns, which modulates the overlap between the π system of the radical and the π systems of the neighboring HHTT molecules, and hence, the hyperfine coupling constants. Rapid electron spin relaxation should occur for any π radical incorporated within the columns of a DLC, which may limit the utility of DLCs for future spin-based technologies.


Assuntos
Cristais Líquidos/química , Mésons , Modelos Químicos , Modelos Moleculares , Anisotropia , Simulação por Computador , Transporte de Elétrons , Transição de Fase , Marcadores de Spin
8.
Phys Chem Chem Phys ; 11(27): 5782-95, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19842496

RESUMO

EPR spectroscopic investigations of reactions between monomeric model compounds representing typical structural moieties of poly(aryl) ionomers and photochemically generated hydroxyl radicals are reported. Deoxygenated solutions of the model compounds (in a water/methanol mixture) containing hydrogen peroxide at defined pH values were exposed to UV light in the flow cell within the cavity of an EPR spectrometer. Spectra were analyzed by computer simulation and the formed radicals were assigned by comparing their g-factors and hyperfine coupling constants (hfccs) with those from the literature and from density functional theory (DFT) calculations. The relevance for polymer electrolyte membrane fuel cells (PEMFCs) and alkaline-anion exchange membrane fuel cells (AAEMFCs) is discussed.

9.
Langmuir ; 20(7): 2652-9, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15835133

RESUMO

The temperature-dependent variation of local environment and reorientation dynamics of the small amphiphile 2-phenylethanol in lamellar phase dispersions of the dichain cationic surfactants, 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and dioctadecyldimethylammonium chloride (DODMAC), and the nonionic surfactant, tetra(ethylene glycol) n-dodecyl ether (C12E4), have been determined using avoided level crossing muon spin resonance spectroscopy (ALC-muSR). For cosurfactant radicals the hydrophobic or hydrophilic character of the surrounding media can be determined from their magnetic resonance signatures. Comparison of the three different bilayer-forming surfactant systems shows that the ALC-muSR technique is able to distinguish both major and subtle differences in the partitioning of the cosurfactant radicals between the different systems.


Assuntos
Membranas Artificiais , Mésons , Álcool Feniletílico/química , Tensoativos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/química , Estrutura Molecular , Propriedades de Superfície , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA