Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 47(17): 7608-14, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18672872

RESUMO

The reaction between Mn(ClO 4) 2 and di-(2-pyridyl)-ketone in the presence of the sodium salt of propanediol as a base in MeOH leads to the formation of a hexanuclear manganese cluster. This cluster has been characterized by the formula [Mn(II) 3Mn(III) 3O(OH)(CH 3pdol) 3(Hpdol) 3(pdol)](ClO 4) 4 ( 1). Molecular conductance measurements of a 10 (-3) M solution of compound 1 in CH 3CN, DMSO, or DMF give Lambda m = 529, 135, or 245 muS/cm, respectively, which suggests a 1:4 cation/anion electrolyte. The crystal structure of hexanuclear manganese cluster 1 consists of two distinct trinuclear units with a pseudocubane-like arrangement. The trinuclear units show two different valence distributions, Mn(II)/Mn(III)/Mn(II) and Mn(III)/Mn(II)/Mn(III). Additional features of interest for the compound include the fact that (a) two of the Mn(III) ions show a Jahn-Teller elongation, whereas the third ion shows a Jahn-Teller compression; (b) one bridge between Mn(III) atoms is an oxo (O (2-)) ion, whereas the bridge between Mn(II) and Mn(III) is a hydroxyl (OH (-)) group; and (c) the di-(2-pyridyl)-ketone ligand that is methanolyzed to methyl-Hpdol and R 2pdol (R = CH 3, H) acts in three different modes: methyl-pdol(-1), Hpdol(-1), and pdol(-2). For magnetic behavior, the general Hamiltonian formalism considers that (a) all of the interactions inside the two "cubanes" between Mn(II) and Mn(III) ions are equal to the J 1 constant, those between Mn(II) ions are equal to the J 2 constant, and those between the Mn(III) ions are equal to the J 3 constant and (b) the interaction between the two cubanes is equal to the J 4 constant. The fitting results are J 1 = J 2 = 0.7 cm (-1), J 3 approximately 0.0, J 4 = -6.2 cm (-1), and g = 2.0 (fixed). According to these results, the ground state is S = 1/2, and the next excited states are S = 3/2 and 5/2 at 0.7 and 1.8 cm (-1), respectively. The EPR spectra prove that the spin ground state at a low temperature is not purely S = 1/2 but is populated with the S = 3/2 state, which is in accordance with the susceptibility and magnetization measurements.

2.
J Inorg Biochem ; 102(4): 618-28, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18055016

RESUMO

Reaction of Mn(II) with phenoxyalkanoic acids and di-2-pyridyl ketone oxime (Hpko) leads to neutral tetranuclear complexes of the general formula Mn(4)(O)(pko)(4)(phenoxyalkanoato)(4) (phenoxyalkanoic acids: H-mcpa=2-methyl-4-chloro-phenoxy-acetic acid, H-2,4,5-T=2,4,5-trichloro-phenoxy-acetic acid or H3,4-D=3,4-dichloro-phenoxy-acetic acid). The compounds were synthesized by adding di-2-pyridyl ketone oxime to MnCl(2) in the presence of the sodium salts of the alkanoic acids in methanol. The crystal structure of Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4).2.5CH(3)OH.0.25H(2)O 1 shows that the complex consists of a [Mn(4)(mu(4)-O)](8+) core with a Mn(IV) and 3 Mn(II) ions in octahedral environment and a mu(4)-O atom bridging the four manganese ions. Spectroscopic studies of the interaction of these tetranuclear clusters with DNA showed that these compounds bind to dsDNA. The binding strength of the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex for calf thymus DNA is equal to 1.1x10(4)M(-1). Among the deoxyribonucleotides they bind preferentially to deoxyguanylic acid (dGMP). Competitive studies with ethidium bromide (EthBr) showed that the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex exhibited the ability to displace the DNA-bound EthBr indicating that the complex binds to DNA via intercalation in strong competition with EthBr for the intercalative binding site. Additionally, DNA electrophoretic mobility experiments showed that all three complexes, at low cluster concentration, are obviously capable of binding to pDNA causing its cleavage (relaxation) at physiological pH and temperature. At higher cluster concentration, catenated dimer forms of pDNA was formed.


Assuntos
DNA/química , Compostos de Manganês/química , Compostos de Manganês/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA