Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 36(6): e4906, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640112

RESUMO

Chemical exchange saturation transfer (CEST) MRI has gained recognition as a valuable addition to the molecular imaging and quantitative biomarker arsenal, especially for characterization of brain tumors. There is also increasing interest in the use of CEST-MRI for applications beyond the brain. However, its translation to body oncology applications lags behind those in neuro-oncology. The slower migration of CEST-MRI to non-neurologic applications reflects the technical challenges inherent to imaging of the torso. In this review, we discuss the application of CEST-MRI to oncologic conditions of the breast and torso (i.e., body imaging), emphasizing the challenges and potential solutions to address them. While data are still limited, reported studies suggest that CEST signal is associated with important histology markers such as tumor grade, receptor status, and proliferation index, some of which are often associated with prognosis and response to therapy. However, further technical development is still needed to make CEST a reliable clinical application for body imaging and establish its role as a predictive and prognostic biomarker.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Prognóstico , Imagem Molecular
2.
Magn Reson Med ; 85(6): 3497-3509, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33314274

RESUMO

PURPOSE: B1+ shimming is an important method for mitigating B1 inhomogeneity in high-field MRI. Using independent power amplifiers for each transmit (Tx) element is the preferred method for B1 shimming but comes with a high cost. Conversely, the simplest approach to control a Tx array is by using coaxial cables of varying length in the Tx chain, but this approach is cumbersome and impractical for dynamic shimming. In this article, a system is described that enables dynamic, phase-only, eight-channel B1+ steering on a 7T MR scanner with only two power amplifiers. METHODS: Power dividers were utilized to first split the existing two-channel Tx signal into eight channels. Digitally controlled phase shifters on each channel were designed to provide independent phase shifts with a resolution of 22.5° (from 0°, 22.5° … 337.5°). To validate the system, an eight-channel body dipole array was simulated and constructed for bench and 7T imaging and evaluation. RESULTS: The phase conjugate B1+ steering method was employed at three different spatial positions in simulation, bench measurements, and scanner measurements-all with matching results. At the desired points, regions with homogenous B1+ were generated, indicating good Tx steering to the selected region. CONCLUSION: The described system can be used as a simple retrofit to existing hardware to provide phase control while avoiding the need to manually switch cables and without requiring independent power amplifiers for each channel, thus demonstrating the ability to perform dynamic B1+ shimming with increased degrees of freedom but without significantly increased hardware cost.


Assuntos
Amplificadores Eletrônicos , Imageamento por Ressonância Magnética , Simulação por Computador , Desenho de Equipamento , Imagens de Fantasmas
3.
Magn Reson Med ; 85(1): 551-559, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820540

RESUMO

PURPOSE: This work describes the construction and evaluation of a bilateral 32-channel receive array for breast imaging at 7T. METHODS: The receive array consisted of 32 receive coils, placed on two 3D-printed hemispherical formers. Each side of the receive array consisted of 16 receive loops, each loop having a corresponding detachable board with match/tune capacitors, active detuning circuitry, and a balun. Coil performance was evaluated on homogeneous canola oil phantoms using a Philips Achieva 7T system. Array coil performance was compared with a bilateral forced current excitation volume coil in transmit/receive mode and with a previously reported 16-channel unilateral coil with a similar design. RESULTS: The 32-channel array had an increase in average SNR throughout both phantoms by a factor of five as compared with the volume coil, with SNR increases up to 10 times along the periphery and three times in the center. Noise measurements showed low interelement noise correlation (average: 5.4%; maximum: 16.8%). Geometry factor maps were acquired for various acceleration factors and showed mean geometry factors <1.2, for combined acceleration factors of up to six. CONCLUSIONS: The improvements achieved demonstrate the clear potential for use in dynamic contrast-enhanced or diffusion-weighted MR studies, while maintaining diagnostically relevant spatial and temporal resolutions.


Assuntos
Mama , Imageamento por Ressonância Magnética , Mama/diagnóstico por imagem , Desenho de Equipamento , Imagens de Fantasmas , Razão Sinal-Ruído , Análise Espectral
4.
Magn Reson Med ; 86(4): 1818-1828, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33977579

RESUMO

PURPOSE: 1 H MRS provides a noninvasive tool for identifying mutations in isocitrate dehydrogenase (IDH). Quantification of the prominent 2-hydroxyglutarate (2HG) resonance at 2.25 ppm is often confounded by the lipid resonance at the same frequency in tumors with elevated lipids. We propose a new spectral fitting approach to separate these overlapped signals, therefore, improving 2HG evaluation. METHODS: TE 97 ms PRESS was acquired at 3T from 42 glioma patients. New lipid basis sets were created, in which the small lipid 2.25-ppm signal strength was preset with reference to the lipid signal at 0.9 ppm, incorporating published fat relaxation data. LCModel fitting using the new lipid bases (Fitting method 2) was conducted along with fitting using the LCModel built-in lipid basis set (Fitting method 1), in which the lipid 2.25-ppm signal is assessed with reference to the lipid 1.3-ppm signal. In-house basis spectra of low-molecular-weight metabolites were used in both fitting methods. RESULTS: Fitting method 2 showed marked improvement in identifying IDH mutational status compared with Fitting method 1. 2HG estimates from Fitting method 2 were overall smaller than those from Fitting method 1, which was because of differential assignment of the signal at 2.25 ppm to lipids. In receiver operating characteristic analysis, Fitting method 2 provided a complete distinction between IDH mutation and wild-type whereas Fitting method 1 did not. CONCLUSION: The data suggest that 1 H MR spectral fitting using the new lipid basis set provides a robust fitting strategy that improves 2HG evaluation in brain tumors with elevated lipids.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glutaratos , Humanos , Lipídeos , Espectroscopia de Ressonância Magnética
5.
Magn Reson Med ; 85(4): 2136-2144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107146

RESUMO

PURPOSE: The recently introduced inhomogeneous magnetization transfer (ihMT) method has predominantly been applied for imaging the central nervous system. Future applications of ihMT, such as in peripheral nerves and muscles, will involve imaging in the vicinity of adipose tissues. This work aims to systematically investigate the partial volume effect of fat on the ihMT signal and to propose an efficient fat-separation method that does not interfere with ihMT measurements. METHODS: First, the influence of fat on ihMT signal was studied using simulations. Next, the ihMT sequence was combined with a multi-echo Dixon acquisition for fat separation. The sequence was tested in 9 healthy volunteers using a 3T human scanner. The ihMT ratio (ihMTR) values were calculated in regions of interest in the brain and the spinal cord using standard acquisition (no fat saturation), water-only, in-phase, and out-of-phase reconstructions. The values obtained were compared with a standard fat suppression method, spectral presaturation with inversion recovery. RESULTS: Simulations showed variations in the ihMTR values in the presence of fat, depending on the TEs used. The IhMTR values in the brain and spinal cord derived from the water-only ihMT multi-echo Dixon images were in good agreement with values from the unsuppressed sequence. The ihMT-spectral presaturation with inversion recovery combination resulted in 24%-35% lower ihMTR values compared with the standard non-fat-suppressed acquisition. CONCLUSION: The presence of fat within a voxel affects the ihMTR calculations. The IhMT multi-echo Dixon method does not compromise the observable ihMT effect and can potentially be used to remove fat influence in ihMT.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Medula Espinal
6.
J Comput Assist Tomogr ; 44(4): 519-526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32697522

RESUMO

We evaluated an alternative diffusion-weighted imaging (DWI) acquisition for prostate magnetic resonance imaging of men with pelvic hardware, using radial k-space sampling (MultiVane [MV]), short-tau inversion-recovery (STIR) fat suppression, and split acquisition of turbo spin-echo signals. The optimized STIR-MV-DWI reduced metal-associated artifacts and image distortion, and aided in visualization of the prostate and lesions. The STIR-MV-DWI can be a valuable adjunct in prostate magnetic resonance imaging of men with pelvic hardware, among whom the conventional echo-planar DWI is compromised.


Assuntos
Equipamentos e Provisões/efeitos adversos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Próstata/diagnóstico por imagem , Humanos , Masculino , Pelve , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador , Razão Sinal-Ruído
7.
Magn Reson Med ; 81(1): 504-513, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30146714

RESUMO

PURPOSE: Chemical exchange saturation transfer is a novel and promising MRI contrast method, but it can be time-consuming. Common parallel imaging methods, like SENSE, can lead to reduced quality of CEST. Here, parallel blind compressed sensing (PBCS), combining blind compressed sensing (BCS) and parallel imaging, is evaluated for the acceleration of CEST in brain and breast. METHODS: The CEST data were collected in phantoms, brain (N = 3), and breast (N = 2). Retrospective Cartesian undersampling was implemented and the reconstruction results of PBCS-CEST were compared with BCS-CEST and k-t sparse-SENSE CEST. The normalized RMSE and the high-frequency error norm were used for quantitative comparison. RESULTS: In phantom and in vivo brain experiments, the acceleration factor of R = 10 (24 k-space lines) was achieved and in breast R = 5 (30 k-space lines), without compromising the quality of the PBCS-reconstructed magnetization transfer rate asymmetry maps and Z-spectra. Parallel BCS provides better reconstruction quality when compared with BCS, k-t sparse-SENSE, and SENSE methods using the same number of samples. Parallel BCS overperforms BCS, indicating that the inclusion of coil sensitivity improves the reconstruction of the CEST data. CONCLUSION: The PBCS method accelerates CEST without compromising its quality. Compressed sensing in combination with parallel imaging can provide a valuable alternative to parallel imaging alone for accelerating CEST experiments.


Assuntos
Encéfalo/diagnóstico por imagem , Mama/diagnóstico por imagem , Compressão de Dados/métodos , Imageamento por Ressonância Magnética , Algoritmos , Meios de Contraste/química , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Masculino , Distribuição Normal , Imagens de Fantasmas , Reprodutibilidade dos Testes
8.
Magn Reson Med ; 80(6): 2402-2414, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29707813

RESUMO

PURPOSE: To compare the recently introduced inhomogeneous magnetization transfer (ihMT) technique with more established MRI techniques including myelin water imaging (MWI) and diffusion tensor imaging (DTI), and to evaluate the microstructural attributes correlating with this new contrast method in the human brain white matter. METHODS: Eight adult healthy volunteers underwent T1 -weighted, ihMT, MWI, and DTI imaging on a 3T human scanner. The ihMT ratio (ihMTR), myelin water fraction (MWF), fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) values were calculated from different white matter tracts. The angle ( θ ) between the directions of the principal eigenvector, as measured by DTI, and the main magnetic field was calculated for all voxels from various fiber tracts. The ihMTR was correlated with MWF and DTI metrics. RESULTS: A strong correlation was found between ihMTR and MWF (ρ = 0.77, P < 0.0001). This was followed by moderate to weak correlations between ihMTR and DTI metrics: RD (ρ = -0.30, P < 0.0001), FA (ρ = 0.20, P < 0.0001), MD (ρ = -0.19, P < 0.0001), AD (ρ = 0.02, P < 0.0001). A strong correlation was found between ihMTR and θ (ρ = -0.541, P < 0.0001). CONCLUSION: The strong correlation with myelin water imaging and its low coefficient of variation suggest that ihMT has the potential to become a new structural imaging marker of myelin. The substantial orientational dependence of ihMT should be taken into account when evaluating and quantitatively interpreting ihMT results.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imageamento Tridimensional/métodos , Bainha de Mielina/química , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Mapeamento Encefálico/métodos , Simulação por Computador , Imagem de Tensor de Difusão , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Magnetismo , Masculino , Reconhecimento Automatizado de Padrão , Software , Água , Adulto Jovem
9.
J Magn Reson Imaging ; 48(4): 1104-1111, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30218576

RESUMO

BACKGROUND: The 3D short tau inversion recovery (STIR) sequence is routinely used in clinical MRI to achieve robust fat suppression. However, the performance of the commonly used adiabatic inversion pulse, hyperbolic secant (HS), is compromised in challenging areas with increased B0 and B1 inhomogeneities, such as brachial plexus at 3T. PURPOSE: To demonstrate the frequency offset corrected inversion (FOCI) pulse as an efficient fat suppression STIR pulse with increased robustness to B0 and B1 inhomogeneities at 3T, compared to the HS pulse. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: Initial evaluation was performed in phantoms and one healthy volunteer by varying the B1 field, while subsequent comparison was performed in three healthy volunteers and five patients without varying the B1 . FIELD STRENGTH/SEQUENCE: 3T; 3D TSE-STIR with HS and FOCI pulses. ASSESSMENT: Brachial plexus images were qualitatively evaluated by two musculoskeletal radiologists independently using a four-point grading scale for fat suppression, shading artifacts, and nerve visualization. STATISTICAL TEST: The Wilcoxon signed-rank test with P < 0.05 was considered statistically significant. RESULTS: Simulations and phantom experiments demonstrated broader bandwidth (2.5 kHz vs. 0.83 kHz, increased B0 robustness) at the same adiabatic threshold and lower adiabatic threshold (5 µT vs. 7 µT at 3.5 ppm, increased B1 robustness) at the same bandwidth with the FOCI pulse compared to the HS pulse With increased bandwidth, the FOCI pulse achieved robust fat suppression even at 50% of maximum B1 strength, while the HS pulse required >75% of maximum B1 strength. Compared to the standard 3D TSE-STIR with HS pulse, the FOCI pulse achieved uniform fat suppression (P < 0.05), better nerve visualization (P < 0.05), and minimal shading artifacts (P < 0.01) in brachial plexus at 3T. DATA CONCLUSION: The FOCI pulse has increased robustness to B0 and B1 inhomogeneities, compared to the HS pulse, and enables uniform fat suppression in brachial plexus at 3T. LEVEL OF EVIDENCE: 1 Techinical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:1104-1111.


Assuntos
Plexo Braquial/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Tecido Adiposo/diagnóstico por imagem , Adulto , Artefatos , Simulação por Computador , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Variações Dependentes do Observador , Imagens de Fantasmas , Radiologia
10.
Magn Reson Med ; 78(6): 2065-2071, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28112825

RESUMO

PURPOSE: Disorders of brain energy metabolism and neurotransmitter recycling have been implicated in multiple neurological conditions. 13 C magnetic resonance spectroscopy (13 C MRS) during intravenous administration of 13 C-labeled compounds has been used to measure turnover rates of brain metabolites. This approach, however, requires prolonged infusion inside the magnet. Proton decoupling is typically required but may be difficult to implement with standard equipment. We examined an alternative approach to monitor glucose metabolism in the human brain. METHODS: 13 C-enriched glucose was infused in healthy subjects outside the magnet to a steady-state level of 13 C enrichment. Subsequently, the subjects were scanned at 7T for 60 min without 1 H decoupling. Metabolic modeling was used to calculate anaplerosis. RESULTS: Biomarkers of energy metabolism and anaplerosis were detected. The glutamate C5 doublet provided information about glucose-derived acetyl-coenzyme A flux into the tricarboxylic acid (TCA) cycle via pyruvate dehydrogenase, and the bicarbonate signal reflected overall TCA cycle activity. The glutamate C1/C5 ratio is sensitive to anaplerosis. CONCLUSION: Brain 13 C MRS at 7T provides information about glucose oxidation and anaplerosis without the need of prolonged 13 C infusions inside the scanner and without technical challenges of 1 H decoupling, making it a feasible approach for clinical research. Magn Reson Med 78:2065-2071, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Isótopos de Carbono/química , Glucose/química , Oxigênio/química , Encéfalo/metabolismo , Ciclo do Ácido Cítrico , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Cetona Oxirredutases/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Magnetismo , Masculino , Neurotransmissores , Prótons
11.
Magn Reson Med ; 75(5): 1875-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26033357

RESUMO

PURPOSE: Chemical exchange saturation transfer (CEST) is a contrast mechanism enhancing low-concentration molecules through saturation transfer from their exchangeable protons to bulk water. Often many scans are acquired to form a Z-spectrum, making the CEST method time-consuming. Here, an ultrafast localized CEST-spectroscopy with PRESS (UCEPR) is proposed to obtain the entire Z-spectrum of a voxel using only two scans, significantly accelerating CEST. THEORY AND METHODS: The approach combines ultrafast nonlocalized CEST spectroscopy with localization using PRESS. A field gradient is applied concurrently with the saturation pulse producing simultaneous saturation of all Z-spectrum frequencies that are also spatially encoded. A readout gradient during data acquisition resolves the spatial dependence of the CEST responses into frequency. UCEPR was tested on a 3T scanner both in phantoms and in vivo. RESULTS: In phantoms, a fast Z-spectroscopy acquisition of multiple pH-variant iopamidol samples was achieved with four- to seven-fold acceleration as compared to the conventional CEST methods. In vivo, amide proton transfer (APT) in white matter of healthy human brain was measured rapidly in 48 s and with high frequency resolution (≤ 0.2 ppm). CONCLUSION: Compared with conventional CEST methods, UCEPR has the advantage of rapidly acquiring high-resolution Z-spectra. Potential in vivo applications include ultrafast localized Z-spectroscopy, quantitative, or dynamic CEST studies.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Espectrofotometria/métodos , Encéfalo/fisiologia , Meios de Contraste/química , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Iopamidol/química , Prótons , Ondas de Rádio , Água/química
12.
Concepts Magn Reson Part B Magn Reson Eng ; 46B(4): 162-168, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28529464

RESUMO

Performing multinuclear experiments requires one or more radiofrequency (RF) coils operating at both the proton and second-nucleus frequencies; however, inductive coupling between coils must be mitigated to retain proton sensitivity and coil tuning stability. The inclusion of trap circuits simplifies placement of multinuclear RF coils while maintaining inter-element isolation. Of the commonly investigated non-proton nuclei, perhaps the most technically demanding is carbon-13, particularly when applying a proton decoupling scheme to improve the resulting spectra. This work presents experimental data for trap circuits withstanding high-power broadband proton decoupling of carbon-13 at 7 T. The advantages and challenges of building trap circuits with various inductor and capacitor components are discussed. Multiple trap designs are evaluated on the bench and utilized on an RF coil at 7 T to detect broadband proton-decoupled carbon-13 spectra from a lipid phantom. A particular trap design, built from a coaxial stub inductor and high-voltage ceramic chip capacitors, is highlighted owing to both its performance and adaptability for planar array coil elements with diverse spatial orientations.

13.
Magn Reson Med ; 67(1): 20-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21656551

RESUMO

The role of diet and fat consumption in the pathogenesis of breast cancer is an important subject. We report a method for noninvasive determination of lipid composition in human breast by proton magnetic resonance spectroscopy (MRS) at 7 T. Two respiratory-triggered TE-averaged stimulated echo acquisition mode (STEAM) acquisitions were performed on the adipose tissue of 10 healthy volunteers where the second acquisition had all gradients inverted. This acquisition protocol allows the suppression of modulation sidebands that complicate spectral analysis at the short TE(avg) = 24.5 ms. The entire acquisition takes ∼10 min. Ten lipid peaks were typically resolved. T(1) and T(2) were also measured and used to correct the peak intensities. The calculated average lipid composition for saturated was 28.7 ± 8.4%, monounsaturated, 48.5 ± 7.9%, and polyunsaturated, 22.7 ± 3.1%, in close agreement with reported values from subcutaneous adipose measurements. Intrasubject variability was 2.0, 1.6, and 3.6% for the saturated, monounsaturated, and polyunsaturated fractions, respectively. In conclusion, we have shown that a chemical analysis of lipids in breast tissue can be determined quite simply, quickly, and noninvasively by proton MRS at 7 T.


Assuntos
Tecido Adiposo/química , Algoritmos , Distribuição da Gordura Corporal/métodos , Mama/química , Mama/fisiologia , Ácidos Graxos/análise , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
NMR Biomed ; 25(4): 523-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21845738

RESUMO

Proton T(2) relaxation times of metabolites in the human brain were measured using point resolved spectroscopy at 3T in vivo. Four echo times (54, 112, 246 and 374 ms) were selected from numerical and phantom analyses for effective detection of the glutamate multiplet at ~ 2.35 ppm. In vivo data were obtained from medial and left occipital cortices of five healthy volunteers. The cortices contained predominantly gray and white matter, respectively. Spectra were analyzed with LCModel software using volume-localized calculated spectra of brain metabolites. The estimate of the signal strength vs. TE was fitted to a monoexponential function for estimation of apparent T(2) (T(2)(†)). T(2)(†) was estimated to be similar between the brain regions for creatine, choline, glutamate and myo-inositol, but significantly different for N-acetylaspartate singlet and multiplet. T(2)(†)s of glutamate and myo-inositol were measured as 181 ± 16 and 197 ± 14 ms (mean ± SD, N = 5) for medial occipital cortices, and 180 ± 12 and 196 ± 17 ms for left occipital cortices, respectively.


Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Creatinina/análise , Ácido Glutâmico/análise , Inositol/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Ácido Aspártico/análise , Encéfalo/anatomia & histologia , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
15.
ACS Sens ; 7(10): 2928-2933, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36255172

RESUMO

Hydrogen peroxide (H2O2) is a type of reactive oxygen species that regulates essential biological processes. Despite the central role of H2O2 in pathophysiological states, available molecular probes for assessing H2O2 in vivo are still limited. This work develops hyperpolarized 15N-boronobenzyl-4-cyanopyridinium (15N-BBCP) as a rationally designed molecular probe for detecting H2O2. The 15N-BBCP demonstrated favorable physicochemical and biochemical properties for H2O2 detection and dynamic nuclear polarization, allowing noninvasive detection of H2O2. In particular, 15N-BBCP and the products possessed long spin-lattice relaxation times and spectrally resolvable 15N chemical shift differences. The performance of hyperpolarized 15N-BBCP was demonstrated both in vitro and in vivo with time-resolved 15N-MRS. This study highlights a promising approach to designing a reaction-based 15N-labeled molecular imaging agent for detecting oxidative stress in vivo.


Assuntos
Peróxido de Hidrogênio , Sondas Moleculares , Sondas Moleculares/química , Imagem Molecular , Espécies Reativas de Oxigênio , Estresse Oxidativo
16.
Magn Reson Med ; 66(3): 609-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21394775

RESUMO

Glycine is a key metabolic intermediate required for the synthesis of proteins, nucleic acids, and other molecules, and its detection in cancer could, therefore, provide biologically relevant information about the growth of the tumor. Here, we report measurement of glycine in human brain and gliomas by an optimized point-resolved spectroscopy sequence at 3 T. Echo time dependence of the major obstacle, myo-inositol (mI) multiplet, was investigated with numerical simulations, incorporating the 3D volume localization. The simulations indicated that a subecho pair (TE(1) , TE(2) ) = (60, 100) ms permits detection of both glycine and mI with optimum selectivity. In vivo validation of the optimized point-resolved spectroscopy was conducted on the right parietal cortex of five healthy volunteers. Metabolite signals estimated from LC Model were normalized with respect to the brain water signal, and the concentrations were evaluated assuming the total creatine concentration at 8 mM. The glycine concentration was estimated as 0.6 ± 0.1 mM (mean ± SD, n = 5), with a mean Cramér-Rao lower bound of 9 ± 1%. The point-resolved spectroscopy sequence was applied to measure the glycine levels in patients with glioblastoma multiforme. Metabolite concentrations were obtained using the water signal from the tumor mass. The study revealed that a subset of human gliomas contains glycine levels elevated 1.5-8 fold relative to normal.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Química Encefálica , Glicina/metabolismo , Humanos , Imageamento Tridimensional , Inositol/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Imagens de Fantasmas
17.
IEEE Trans Biomed Eng ; 68(1): 109-118, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32746012

RESUMO

OBJECTIVE: Most MRI scanners are equipped to receive signals from 1H array coils but few support multi-channel reception for other nuclei. Using receive arrays can provide significant SNR benefits, usually exploited to enable accelerated imaging, but the extension of these arrays to non-1H nuclei has received less attention because of the relative lack of broadband array receivers. Non-1H nuclei often have low sensitivity and stand to benefit greatly from the increase in SNR that arrays can provide. This paper presents a cost-effective approach for adapting standard 1H multi-channel array receivers for use with other nuclei - in this case, 13C. METHODS: A frequency translation system has been developed that uses active mixers residing at the magnet bore to convert the received signal from a non-1H array to the 1H frequency for reception by the host system receiver. RESULTS: This system has been demonstrated at 4.7T and 7T while preserving SNR and isolation. 1H decoupling, particularly important for 13C detection, can be straightforwardly accommodated. CONCLUSION: Frequency translation can convert 1H-only multi-channel receivers for use with other nuclei while maintaining SNR and channel isolation while still enabling 1H decoupling. SIGNIFICANCE: This work allows existing multi-channel MRI receivers to be adapted to receive signals from nuclei other than 1H, allowing for the use of receive arrays for in vivo multi-nuclear NMR.


Assuntos
Imageamento por Ressonância Magnética , Desenho de Equipamento , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Razão Sinal-Ruído
18.
Magn Reson Med ; 64(5): 1247-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20597122

RESUMO

N-Acetylaspartylglutamate in human brain has been measured with difference editing at 7 T. The CH(2) proton resonances (∼ 2.5 ppm) of the aspartyl groups of N-acetylaspartylglutamate and N-acetylaspartate were difference edited (MEGA) using 20-msec gaussian radiofrequency pulses for selective 180 ° rotations of the coupling partners at 4.61 and 4.38 ppm, respectively. The echo time of the editing sequence, 108 msec, was obtained in phantom tests. Single-voxel localized in vivo measurements were conducted in the medial prefrontal and right frontal cortices of five healthy volunteers. The gray and white matter fractions within the voxels were obtained from T(1)-weighted image segmentation. Using linear regression of the metabolite concentration vs. fractional white matter contents within the voxels, the N-acetylaspartylglutamate-to-N-acetylaspartate concentration ratios in gray and white matter were estimated to be 0.13 and 0.28 by difference editing (95% confidence intervals 0.07-0.19 and 0.22-0.34), respectively, assuming identical relaxation effects between the metabolites.


Assuntos
Algoritmos , Dipeptídeos/análise , Lobo Frontal/química , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Prótons
19.
NMR Biomed ; 23(9): 1044-52, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20963800

RESUMO

Resolution enhancement for glutamate (Glu), glutamine (Gln) and glutathione (GSH) in the human brain by TE-optimized point-resolved spectroscopy (PRESS) at 7 T is reported. Sub-TE dependences of the multiplets of Glu, Gln, GSH, γ-aminobutyric acid (GABA) and N-acetylaspartate (NAA) at 2.2-2.6 ppm were investigated with density matrix simulations, incorporating three-dimensional volume localization. The numerical simulations indicated that the C4-proton multiplets can be completely separated with (TE(1), TE(2)) = (37, 63) ms, as a result of a narrowing of the multiplets and suppression of the NAA 2.5 ppm signal. Phantom experiments reproduced the signal yield and lineshape from simulations within experimental errors. In vivo tests of optimized PRESS were conducted on the prefrontal cortex of six healthy volunteers. In spectral fitting by LCModel, Cramér-Rao lower bounds (CRLBs) of Glu, Gln and GSH were 2 ± 1, 5 ± 1 and 6 ± 2 (mean ± SD), respectively. To evaluate the performance of the optimized PRESS method under identical experimental conditions, stimulated-echo spectra were acquired with (TE, TM) = (14, 37) and (74, 68) ms. The CRLB of Glu was similar between PRESS and short-TE stimulated-echo acquisition mode (STEAM), but the CRLBs of Gln and GSH were lower in PRESS than in both STEAM acquisitions.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Adulto , Encéfalo/anatomia & histologia , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Masculino , Imagens de Fantasmas , Adulto Jovem
20.
IEEE Trans Biomed Eng ; 65(10): 2259-2266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989961

RESUMO

Ultrahigh field imaging of the body and the spine is challenging due to the large field-of-view (FOV) required. It is especially difficult for RF transmission due to its requirement on both the length and the depth of the ${\rm{B}}_{1}^{{\rm + }}$ field. One solution is to use a long dipole to provide continuous current distribution. The drawback is the natural falloff of the ${\rm{B}}_{1}$ field toward the ends of the dipole, therefore the ${\rm{B}}_{1}^{{\rm + }}$ per unit square root of maximum specific absorption rate ${\rm{(B}}_{1}^{{\rm + }}{\rm{/ \surd SAR}}_{{\rm{max}}})$ performance is particularly poor toward the end of the dipole. In this study, a segmented element design using forced-current excitation and a switching circuit is presented. The design provides long FOV when desired and allows flexible FOV switching and power distribution without additional power amplifiers. Different element types and arrangements were explored and a segmented dipole design was chosen as the best design. The segmented dipole was implemented and tested on the bench and with a phantom on a 7T whole body scanner. The switchable mode dipole enabled a large FOV in the long mode and improved ${\rm{B}}_{1}^{{\rm + }}{\rm{/ \surd SAR}}_{{\rm{max}}}$ efficiency in a smaller FOV in the short mode.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Desenho de Equipamento , Imagem Corporal Total/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA