Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991644

RESUMO

The popularity of smart sensors and the Internet of Things (IoT) is growing in various fields and applications. Both collect and transfer data to networks. However, due to limited resources, deploying IoT in real-world applications can be challenging. Most of the algorithmic solutions proposed so far to address these challenges were based on linear interval approximations and were developed for resource-constrained microcontroller architectures, i.e., they need buffering of the sensor data and either have a runtime dependency on the segment length or require the sensor inverse response to be analytically known in advance. Our present work proposed a new algorithm for the piecewise-linear approximation of differentiable sensor characteristics with varying algebraic curvature, maintaining the low fixed computational complexity as well as reduced memory requirements, as demonstrated in a test concerning the linearization of the inverse sensor characteristic of type K thermocouple. As before, our error-minimization approach solved the two problems of finding the inverse sensor characteristic and its linearization simultaneously while minimizing the number of points needed to support the characteristic.

2.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161693

RESUMO

In this work, we introduce and use an innovative approach for adaptive piecewise linear interval approximation of sensor characteristics, which are differentiable functions. The aim is to obtain a discreet type of inverse sensor characteristic, with a predefined maximum approximation error, with minimization of the number of points defining the characteristic, which in turn is related to the possibilities for using microcontrollers with limited energy and memory resources. In this context, the results from the study indicate that to overcome the problems arising from the resource constraints of smart devices, appropriate "lightweight" algorithms are needed that allow efficient connectivity and intelligent management of the measurement processes. The method has two benefits: first, low-cost microcontrollers could be used for hardware implementation of the industrial sensor devices; second, the optimal subdivision of the measurement range reduces the space in the memory of the microcontroller necessary for storage of the parameters of the linearized characteristic. Although the discussed computational examples are aimed at building adaptive approximations for temperature sensors, the algorithm can easily be extended to many other sensor types and can improve the performance of resource-constrained devices. For prescribed maximum approximation error, the inverse sensor characteristic is found directly in the linearized form. Further advantages of the proposed approach are: (i) the maximum error under linearization of the inverse sensor characteristic at all intervals, except in the general case of the last one, is the same; (ii) the approach allows non-uniform distribution of maximum approximation error, i.e., different maximum approximation errors could be assigned to particular intervals; (iii) the approach allows the application to the general type of differentiable sensor characteristics with piecewise concave/convex properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA