Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 99: 117607, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246114

RESUMO

Various tenofovir (TFV) prodrugs have been developed by introducing masking groups to the hydroxyls of the monophosphonate group to enhance intestinal absorption efficiency and therapeutic effects. However, the reported TFV prodrugs have drawbacks such as low bioavailability, systemic toxicity caused by their breakdown in non-targeted tissues, and potential low intracellular conversion efficiency. In the present study, we developed a class of TFV monobenzyl ester phosphonoamidate prodrugs without substitutions on the benzene ring. Compared with previous TFV prodrugs, compounds 3a and 3b developed in the present study showed higher anti-hepatitis B virus activity, stronger stability and higher levels of intrahepatic enrichment of the metabolic product (TFV), indicating the potential of these compounds as novel prodrugs with high efficiency and low systemic toxicity for the treatment of hepatitis B.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Pró-Fármacos , Humanos , Tenofovir/farmacologia , Tenofovir/metabolismo , Tenofovir/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Adenina/farmacologia , Adenina/uso terapêutico , Pró-Fármacos/metabolismo , Anticorpos , Infecções por HIV/tratamento farmacológico
2.
Environ Res ; 250: 118419, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316389

RESUMO

Ferrous iron (Fe2+) reduces the amount of external carbon source used for the denitrification of low-C/N wastewater. The effects of key operating parameters on the efficiency of ferrous-dependent autotrophic denitrification (FDAD) and the functioning mechanism of the microbiome can provide a regulatory strategy for improving the denitrification efficiency of low C/N wastewater. In this study, the response surface method (RSM) was used to explore the influence of four important parameters-the molar ratio of Fe2+ to NO3--N (Fe/N), total organic carbon (TOC), the molar ratio of inorganic carbon to NO3--N (IC/N) and sludge volume (SV, %)-on the FDAD efficiency. Functional prediction and molecular ecological networks based on high-throughputs sequencing techniques were used to explore changes in the structure, function, and biomarkers of the sludge microbial community. The results showed that Fe/N and TOC were the main parameters affecting FDAD efficiency. Higher concentrations of TOC and high Fe/N ratios provided more electron donors and improved denitrification efficiency, but weakened the importance of biomarkers (Rhodanobacter, Thermomonas, Comamonas, Thauera, Geothrix and unclassified genus of family Gallionellaceae) in the sludge ecological network. When Fe/N > 4, the denitrification efficiency fluctuated significantly. Functional prediction results indicated that genes that dominated N2O and NO reduction and the genes that dominated Fe2+ transport showed a slight decrease in abundance at high Fe/N levels. In light of these findings, we recommend the following optimization ranges of parameters: Fe/N (3.5-4); TOC/N (0.36-0.42); IC/N (3.5-4); and SV (approximately 35%).


Assuntos
Processos Autotróficos , Carbono , Desnitrificação , Ferro , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Carbono/metabolismo , Ferro/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Microbiota , Esgotos/microbiologia
3.
Anal Chem ; 95(9): 4291-4300, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36780247

RESUMO

Exposure to environmental pollutants occurs ubiquitously and poses many risks to human health and the ecosystem. Although many analytical methods have been developed to assess such jeopardies, the circumstances applying these means are restricted to linking the toxicities to compositions in the pollutant mixtures. The present study proposes a novel analytical approach, namely, biospectroscopy-bioreporter-coupling (BBC), to quantify and apportion the toxicities of metal ions and organic pollutants. Using a toxicity bioreporter ADPWH_recA and Raman spectroscopy, both bioluminescent signals and spectral alterations had similar dosage- and time-response behavior to the toxic compounds, validating the possibility of coupling these two methods from practical aspects. Raman spectral alterations successfully distinguished the biomarkers for different toxicity mechanisms of individual pollutants, such as ring breathing mode of DNA/RNA bases (1373 cm-1) by Cr, reactive oxygen species-induced peaks of proteins (1243 cm-1), collagen (813 cm-1), and lipids (1255 cm-1) by most metal ions, and indicative fingerprints of organic toxins. The support vector machine model had a satisfactory performance in distinguishing and apportioning toxicities of individual toxins from all input data, achieving a sensitivity of 88.54% and a specificity of 97.80%. This work set a preliminary database for Raman spectral alterations of whole-cell bioreporter response to multiple pollutants. It proved the state-of-the-art concept that the BBC approach is feasible to rapidly quantify and precisely apportion toxicities of numerous pollutant mixtures.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade
4.
Environ Sci Technol ; 57(1): 810-821, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36459424

RESUMO

The thawing of dormant plateau permafrost emits nitrous oxide (N2O) through wetlands; however, the N2O production mechanism in plateau wetlands is still unclear. Here, we used the 15N-18O double tracer technique and metagenomic sequencing to analyze the N2O production mechanism in the Yunnan-Kweichow and Qinghai-Tibet plateau wetlands during the summer of 2020. N2O production activity was detected in all 16 sediment samples (elevation 1020-4601 m: 2.55 ± 0.42-26.38 ± 3.25 ng N g-1 d-1) and was promoted by nitrifier denitrification (ND). The key functional genes of ND (amoA, hao, and nirK) belonged to complete ammonia oxidizing (comammox) bacteria, and the key ND species was the comammox bacterium Nitrospira nitrificans. We found that the comammox bacterial species N. nitrificans and the ammonia oxidizing bacterial (AOB) species Nitrosomonas europaea cooperate to produce N2O in the plateau wetland sediments. Furthermore, we inferred that environmental factors (elevation and total organic matter (TOM)) influence the cooperation pattern via N. nitrificans, thus affecting the N2O production activity in the plateau wetland sediments. Our findings advance the mechanistic understanding of nitrifiers in biogeochemical cycles and global climate change.


Assuntos
Archaea , Óxido Nitroso , Óxido Nitroso/análise , Áreas Alagadas , Amônia , Oxirredução , China , Bactérias/genética , Nitrificação , Microbiologia do Solo
5.
J Environ Manage ; 338: 117841, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003226

RESUMO

Nitrogen cycling plays a key role in maintaining river ecological functions which are threatened by anthropogenic activities. The newly discovered complete ammonia oxidation, comammox, provides novel insights into the ecological effects of nitrogen on that it oxidizes ammonia directly to nitrate without releasing nitrite as canonical ammonia oxidization conducted by AOA or AOB which is believed to play an important role in greenhouse gas generation. Theoretically, contribution of commamox, AOA and AOB to ammonia oxidization in rivers might be impacted by anthropogenic land-use activities through alterations in flow regime and nutrient input. While how land use pattern affects comammox and other canonical ammonia oxidizers remains elusive. In this study, we examined the ecological effects of land use practices on the activity and contribution of three distinctive groups of ammonia oxidizers (AOA, AOB, comammox) as well as the composition of comammox bacterial communities from 15 subbasins covering an area of 6166 km2 in North China. The results showed that comammox dominated nitrification (55.71%-81.21%) in less disturbed basins characterized by extensive forests and grassland, while AOB became the major player (53.83%-76.43%) in highly developed basins with drastic urban and agricultural development. In addition, increasing anthropogenic land use activities within the watershed lowered the alpha diversity of comammox communities and simplified the comammox network. Additionally, the alterations of NH4+-N, pH and C/N induced by land use change were found to be crucial drivers in determining the distribution and activity of AOB and comammox. Together, our findings cast a new light on aquatic-terrestrial linkages from the view of microorganism-mediated nitrogen cycling and can further be applied to target watershed land use management.


Assuntos
Archaea , Rios , Amônia , Efeitos Antropogênicos , Oxirredução , Filogenia , Microbiologia do Solo , Nitrificação , Nitrogênio
6.
J Environ Manage ; 325(Pt B): 116476, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323113

RESUMO

Artificial flow regulation is an important measure to alleviate water shortages and improve the ecological quality of river basins. Dissolved organic matter (DOM) plays a crucial role in the carbon cycle and regulates biogeochemical and ecological processes in aquatic systems. Among the numerous studies on the effects of anthropogenic activities on the quality and quantity of river DOM, few studies have focused on the influence of different artificially regulated flow on the composition, source, and fate of fluvial DOM. This study aims to elucidate the impact of different artificial regulation modes of river flows on the source, migration, and transformation of DOM. The optical properties of DOM were used to explore the temporal and spatial distribution characteristics of DOM in the Yongding River Basin, where artificial regulation of river flows by cross-basin and inner-basin water transfers were implemented. Excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis revealed four fluorescent substances of DOM in the water: one microbial humic-like (C1), one terrestrial humic-like (C2), one non-point source pollution humic-like (C4), and one tryptophan-like (C3) substance. Due to cross-basin water transfer from the Yellow River, the flow is the highest (21.79 m3/s) during spring, which was the reason that the signal of C2 was stronger during spring (71.45 QSU) compared to summer (57.12 QSU) and autumn (51.78 QSU). Due to inner-basin water transfer from upstream reservoirs, C3 derived from autochthonous sources were higher during autumn (130.81 QSU) than during spring (77.17 QSU) and summer (93.16 QSU). With no water transfer, more C1 were present at higher temperatures during summer (141.51 QSU) than during spring (126.73 QSU) and autumn (128.8 QSU). Moreover, C4 originating from urban and/or agricultural non-point source runoff increased during summer (57.07 QSU) than during spring (33.29 QSU) and autumn (52.27 QSU) because of increased rainfall. The different modes of artificial regulation of river flows changed the hydrological characteristics of the basin, which in turn altered the temporal and spatial distribution characteristics of the quantity and quality of DOM. The finding of this study can help promote the development of appropriate management strategies for artificial regulation of river flows in the basin. Furthermore, this study provides a basis for investigating the effects of different artificial flow regulations on the carbon cycles and ecological risks of rivers in the basin.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Estações do Ano , Espectrometria de Fluorescência , Agricultura , China
7.
Environ Res ; 212(Pt E): 113618, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671800

RESUMO

Bacteria, archaea and fungi usually coexist in various soil habitats and play important roles in biogeochemical cycle and remediation of contamination. Despite their significance, their combined bioassembly pattern, ecological interactions and driving factors in contaminated soils still remain obscure. To fill the gap, a systemic investigation on the characteristics of microbial community including bacteria, archaea and fungi, assembly patterns and environmental driving factors was conducted in an abandoned gas station soils which were contaminated by polycyclic aromatic compounds and potentially toxic elements for decades. The results showed that the soils were contaminated excessively by benzo[a]pyrene (0.46-2.00 mg/kg) and Dibenz[a,h]anthracene (0.37-1.30 mg/kg). Multitudinous contaminant-degrading/resistant microorganisms and unigenes were detected, indicating potential of the soils to mitigate the pollution. Compared with fungi and archaea, the bacteria had higher community diversity and were more responsive to seasonal shifts. Functional genes (nidB, nahAb, nahAa, adhP, adh, adhC, etc.) involved in biodegradation were highly enriched in summer (1.96% vs 1.80%). The co-occurrence network analysis showed summer communities exhibit a more robust network structure and positive interactions than winter communities. The fungi Neocucurbitaria, Penicillium, Fusarium, Chrysosporium, Knufia, Filobasidium, Wallemia and Rhodotorula were identified as the keystone taxa, indicating that fungi also had important positions in the interdomain molecular ecological networks of both seasons. The network topological properties and |ßNTI| (66.7%-93.3% greater than 2) results indicated the deterministic assembly processes of the microbial communities in the contaminated soil. Acenaphthylene, benzo[b]fluoranthene, indeno[1,2,3-cd]perylene, benzo[g,h,i]pyrene and 9-fluorenone were the key environmental factors driving the deterministic assembly processes of the interdomain microbial community in the contaminated soil. These findings extended our knowledge of interdomain microbial community assembly mechanisms and ecological patterns in natural attenuation and provide valuable guidance in associated bioremediation strategies.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Fungos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
8.
Environ Res ; 212(Pt A): 113191, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35351456

RESUMO

Soil polycyclic aromatic compound (PAC) pollution as a result of petroleum exploitation has caused serious environmental problems. The unclear assembly and functional patterns of microorganisms in oilfield soils limits the understanding of microbial mechanisms for PAC elimination and health risk reduction. This study investigated the polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) occurrence, and their impact on the bacteria-archaea-fungi community diversity, co-occurrence network and functionality in the soil of an abandoned oilfield. The results showed that the PAC content in the oilfield ranged from 3429.03 µg kg-1 to 6070.89 µg kg-1, and risk assessment results suggested a potential cancer risk to children and adults. High molecular weight PAHs (98.9%) and SPAHs (1.0%) contributed to 99.9% of the toxic equivalent concentration. For microbial analysis, the abundantly detected degraders and unigenes indicated the microbial potential to mitigate pollutants and reduce health risks. Microbial abundance and diversity were found to be negatively correlated with health risk. The co-occurrence network analysis revealed nonrandom assembly patterns of the interdomain microbial communities, and species in the network exhibited strong positive connections (59%). The network demonstrated strong ecological linkages and was divided into five smaller coherent modules, in which the functional microbes were mainly involved in organic substance and mineral component degradation, biological electron transfer and nutrient cycle processes. The keystone species for maintaining microbial ecological functions included Marinobacter of bacteria and Neocosmospora of fungi. Additionally, benzo [g,h,i]pyrene, dibenz [a,h]anthracene, indeno [1,2,3-cd]perylene and total phosphorus were the key environmental factors driving the assembly and functional patterns of microbial communities under pollution stress. This work improves the knowledge of the functional pattern and environmental adaptation mechanisms of interdomain microbes, and provides valuable guidance for the further bioremediation of PAC-contaminated soils in oilfields.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes do Solo , Bactérias/metabolismo , Biodegradação Ambiental , Criança , Humanos , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/análise
9.
Ecotoxicol Environ Saf ; 240: 113704, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653968

RESUMO

Eucalyptus is widely planted in China for wood industries, and there are increasing concerns about its ecotoxicity in the environment. This study explored the in-vitro toxicity of Eucalyptus extracts by assessing the impacts of water-soluble and dimethylsulfoxide (DMSO)-soluble fractions via a whole-cell bioreporter, Acinetobacter baylyi ADPWH_recA. Compounds identified in Eucalyptus extracts included one tannin, two phenolic acids, four terpenoids, four glycosides, and five flavonoids. The leaf extracts contained more biological-active components than barks and roots. Genotoxicity induced by Eucalyptus extracts was mainly associated with water extracts (e.g., flavonoids, phenolic acids) instead of DMSO extracts. The significant cytotoxicity was explained by programmed cell death (PCD), suggested by the results of propidium iodide (PI) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays. Generally, water-soluble fractions contributed more toxicities than DMSO-soluble fractions, particularly at high concentrations. A robust linear regression was built between the compromised toxicity and PCD index (Compromised toxicity = -2.192 × PCD index + 2.219; R2 = 0.8886), suggesting a PCD-dependent compromised toxicity which was greatly underestimated. Our results implied non-neglectable ecotoxicological risks of Eucalyptus extracts, hinting at the possible magnified ecological impacts of its large-scale plantation and the potential adverse outcomes to the surrounding ecosystems.


Assuntos
Eucalyptus , Dimetil Sulfóxido , Ecossistema , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Água
10.
J Environ Manage ; 295: 113060, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34167054

RESUMO

Harmful algal blooms (HABs) is a worldwide water environmental problem. HABs usually happens in short time and is difficult to be controlled. Early warning of HABs using data-driven models is prospective in making time for taking precaution against HABs. High-frequency water quality monitoring data are necessary to improve the reliability of the model, but it is expensive. This research used environmental fluid dynamics code (EFDC) to extend one-point data obtained by only one instrument to the whole 249 ha water area instead of multi-instruments monitoring, followed by Long short-term memory (LSTM) to predict the HABs in the whole water body. Correlation analysis and principal component analysis were used to reduce the data dimension and improve model accuracy. Finally, the LSTM model was calibrated to predict chlorophyll-a (Chl-a) for the next 1 to 3 time steps. The Nash-Sutcliffe efficiency coefficient (NSE) and mean absolute percentage error (MAPE) of EFDC-LSTM were 0.797-0.991 and 2.74-13.16%, respectively, suggesting the promising utilization of this model in early warning systems for HABs. EFDC-LSTM achieves high-precision HABs forecasting in a cost-effective manner, providing a reliable way to detect HABs in advance.


Assuntos
Proliferação Nociva de Algas , Hidrodinâmica , Estudos Prospectivos , Reprodutibilidade dos Testes , Qualidade da Água
11.
Environ Monit Assess ; 193(7): 406, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110515

RESUMO

Riparian vegetation cover is significantly affected by a river's hydrological conditions. Especially in arid and semiarid areas, low flow will degrade riparian vegetation, and recent, intensive human activities in the Yongding River Basin have caused a sharp decrease in river flow. We analyzed interannual change in riparian vegetation, river flow effects, and land use on vegetation coverage using the 40 years (1977-2016) of remote sensing images and river flow, combined with 38 years (1980-2018) of land use data. The normalized difference vegetation index (NDVI) was used to determine vegetation cover in five different categories: extremely low, low, medium, high, and extremely high based on the pixel dichotomy model. The weighted average was calculated to obtain vegetation cover trends. We show that riparian vegetation cover from four rivers increased. Compared with 1977, in 2016, combined high and extremely high vegetation covers at the Dongyang, Yang, Sanggan, and Yongding Rivers increased by 20.3%, 26.7%, 50.0%, and 39.2%, respectively. High (R = -0.976, P < 0.01) and extremely high (R = -0.762, P < 0.05) vegetation covers are negatively correlated with flow in the Yongding River. The high vegetation cover of the Sanggan River riparian zone is negatively correlated with river flow (R = -0.683, P < 0.05). In the Dongyang and Sanggan Rivers, land use analysis in the riparian zone showed that change in cultivated land, grassland, and forest were significantly correlated with high and extremely high vegetation cover. The abundant cultivated land and restoration activities are likely responsible for the increase of riparian vegetation cover as river flows decline.


Assuntos
Ecossistema , Rios , Monitoramento Ambiental , Humanos , Hidrologia
12.
Ecotoxicol Environ Saf ; 203: 110931, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32684516

RESUMO

Numerous studies have enriched our knowledge of the microbial community composition and metabolic versatility of contaminated soil. However, there remains a substantial gap regarding the bioassembly patterns of the indigenous microbial community distribution in contaminated deep soils. Herein, the indigenous microbial community structure diversity, function, and co-occurrence relationships in aged PAH-contaminated deep soil collected from an abandoned chemical facility were investigated using high-throughput sequencing. The results showed that the dominant phyla in all samples were responsible for PAH degradation and included Proteobacteria (20.86%-81.37%), Chloroflexi (2.03%-28.44%), Firmicutes (3.06%-31.16%), Actinobacteria (2.92%-11.91%), Acidobacteria (0.41%-12.68%), and Nitrospirae (0.81%-9.21%). Eighty biomarkers were obtained by linear discriminant analysis of effect size (LEfSe), and most of these biomarkers were PAH degraders. Functional predictions using Tax4Fun indicated that the aged contaminated soil has the potential for PAH degradation. Statistical analysis showed that in contrast with the PAH concentration, edaphic properties (nutrients and pH) were significantly correlated (r > 0.25, P < 0.01) with the bacterial community and functional composition. Co-occurrence network analysis (modularity index of 0.781) revealed non-random assembly patterns of the bacterial communities in the PAH-contaminated soils. The modules in the network were mainly involved in carbon and nitrogen cycles, organic substance degradation, and biological electron transfer processes. Microbes from the same module had strong ecological linkages. Additionally, SAR202 clade, Thermoanaerobaculum, Nitrospira, and Xanthomonadales, which were identified as keystone species, played an irreplaceable role in the network. Overall, our results suggested that environmental factors such as nutrients and pH, together with ecological function, are the main factors driving the assembly of microbial communities in aged PAH-contaminated deep soils.


Assuntos
Microbiota/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Actinobacteria/efeitos dos fármacos , Actinobacteria/metabolismo , Biodegradação Ambiental , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise
13.
J Environ Sci (China) ; 79: 91-99, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784468

RESUMO

Because of its high adsorption capacity, biochar has been used to stabilize metals when remediating contaminated soils; to date, however, it has seldom been used to remediate contaminated sediment. A biochar was used as a stabilization agent to remediate Cu- and Pb-contaminated sediments, collected from three locations in or close to Beijing. The sediments were mixed with a palm sawdust gasified biochar at a range of weight ratios (2.5%, 5%, and 10%) and incubated for 10, 30, or 60 days. The performance of the different treatments and the heavy metal fractions in the sediments were assessed using four extraction methods, including diffusive gradients in thin films, the porewater concentration, a sequential extraction, and the toxicity characteristic leaching procedure. The results showed that biochar could enhance the stability of heavy metals in contaminated sediments. The degree of stability increased as both the dose of biochar and the incubation time increased. The sediment pH and the morphology of the metal crystals adsorbed onto the biochar changed as the contact time increased. Our results showed that adsorption, metal crystallization, and the pH were the main controls on the stabilization of metals in contaminated sediment by biochar.


Assuntos
Carvão Vegetal/química , Cobre/química , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Chumbo/química , Poluentes Químicos da Água/química , Adsorção , Pequim , Lagos , Rios
14.
J Environ Sci (China) ; 63: 156-173, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29406100

RESUMO

Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Metais/química , Poluentes do Solo/química , Sedimentos Geológicos/química
15.
Appl Microbiol Biotechnol ; 101(23-24): 8365-8377, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29032469

RESUMO

This study focused on the protein expression of a Microbacterium sp. strain that utilized various concentrations of benzo(a)pyrene (BaP) as the sole source of carbon and energy under anaerobic conditions. A total of 1539 protein species were quantified by isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS. GO, COG, and pathway enrichment analysis showed that most proteins demonstrated catalytic and binding functions and were mainly involved in metabolic processes, cellular processes, and single-organism processes. Sixty-two proteins were found in their abundances in BaP-stress conditions different from normal conditions. These proteins function in the metabolic pathways; the biosynthesis of secondary metabolites, the biosynthesis of antibiotics, microbial metabolism in diverse environments, carbon metabolism, and the biosynthesis of amino acids were markedly altered. Furthermore, enoyl-CoA hydratase was proposed to be a key protein during BaP removal of the Microbacterium sp. strain. This study provides a powerful platform for the further exploration of BaP removal, and the differentially expressed proteins provide insight into the mechanism of the BaP removal pathway.


Assuntos
Actinobacteria/química , Actinobacteria/metabolismo , Benzo(a)pireno/metabolismo , Proteoma/análise , Anaerobiose , Biotransformação , Carbono/metabolismo , Cromatografia Líquida , Metabolismo Energético , Proteômica , Espectrometria de Massas em Tandem
16.
Bioprocess Biosyst Eng ; 40(12): 1825-1838, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28913631

RESUMO

High-molecular-weight polycyclic aromatic hydrocarbons are persistent organic pollutants with great environmental and human health risks and the associated bioremediation activities have always been hampered by the lack of powerful bacterial species under redox conditions. A Microbacterium sp. strain capable of using benzo(a)pyrene as sole carbon and energy sources under denitrifying conditions was isolated. The difference in protein expression during BaP removal and removal characterization were investigated. A total of 146 proteins were differentially expressed, 44 proteins were significantly up-regulated and 102 proteins were markedly down-regulated. GO and COG analysis showed that BaP removal inhibited the expression of proteins related to glucose metabolism at different levels and activated other metabolic pathway. The proteins associated with catalytic activity and metabolic process were altered significantly. Furthermore, the BaP removal might be occurred in certain organelle of M.CSW3. The strain removed BaP with a speed of 0.0657-1.0072 mg/L/day over the concentrations range 2.5-100 mg/L. High removal rates (>70%) were obtained over the range of pH 7-11 in 14 days. Carbohydrates and organic acids which could be utilized by the strain, as well as heavy metal ions, reduced BaP removal efficiency. However, phenanthrene or pyrene addition enhanced the removal capability of M.CSW3. The strain was proved to have practical potential for bioremediation of PAHs-contaminated soil and this study provided a powerful platform for further application by improving production of associated proteins.


Assuntos
Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Benzo(a)pireno/isolamento & purificação , Proteômica , Actinobacteria/genética , Carbono/metabolismo , Catálise , Desnitrificação , Regulação para Baixo , Glucose/metabolismo , Filogenia , RNA Ribossômico 16S/genética
17.
Arch Environ Contam Toxicol ; 72(4): 519-529, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28466253

RESUMO

Potential threats exist where groundwater is polluted by high concentrations of oil compounds (980.20 mg L-1 the highest TPHs). An abandoned petrochemical plant in Lanzhou City, where long-term petrochemical products leakage contaminated the groundwater, was used as a field site in this study. To determine the extent of pollution and find an effective solution, chemical techniques combined with molecular biological techniques were used to survey the migration and decomposition of pollutants. Moreover, Illumina Sequencing was employed to reveal the microbial changes of different sites. Light-chain alkanes (mostly C6-C9), most benzene compounds, and some polycyclic aromatic hydrocarbons (naphthalene, 2-methylnaphthalene) mainly polluted the source. C29 to C36 and chlorobenzenes (hexachlorocyclohexane) polluted the secondary polluted sites. Moreover, chloralkane (trichloroethane and dichloroethane), benzene derivatives (trimethylbenzene and butylbenzene), and PAHs (fluorene and phenanthrene) were present in the other longtime-contaminated water. The bacterial genera are closely related with the chemical matters, and different groups of microorganisms gather in the sample sites that are polluted with different kinds of oil. The biodiversity and abundance of observed species change with pollution conditions. The dominant phyla (81%) of the bacterial community structure are Proteobacteria (62.2% of the total microbes), Bacteroidetes (8.85%), Actinobacteria (6.70%), and Choloroflexi (3.03%). Pseudomonadaceae is significant in the oil-polluted source and Comamonadaceae is significant in the secondary polluted (migrated oil) sample; these two genera are natural decomposers of refractory matters. Amycolatopsis, Rhodocyclaceae, Sulfurimonas, and Sulfuricurvum are the dominant genera in the long-migrated oil-polluted samples. Bioavailability of the oil-contaminated place differs with levels of pollution and cleaning the worse-polluted sites by microbes is more difficult.


Assuntos
Monitoramento Ambiental , Água Subterrânea/microbiologia , Poluição por Petróleo , Poluentes do Solo/análise , Microbiologia da Água , Poluentes Químicos da Água/análise , Biodiversidade , China , Água Subterrânea/química , Hidrocarbonetos Policíclicos Aromáticos
18.
J Environ Sci (China) ; 56: 12-24, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28571846

RESUMO

To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe3O4), an MMT/Fe3O4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs+ and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe3O4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca2+>Mg2+>K+>Na+, which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs+ was NH4+ ion exchange and surface hydroxyl group coordination, with the former being more predominant.


Assuntos
Compostos de Amônio/química , Césio/análise , Poluentes Químicos da Água/análise , Adsorção , Bentonita/química , Césio/química , Precipitação Química , Concentração de Íons de Hidrogênio , Cinética , Solo/química , Água/química , Purificação da Água/métodos
19.
Arch Environ Contam Toxicol ; 71(1): 122-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27053089

RESUMO

The connection between microbial community structure and spatial variation and pollution in river waters has been widely investigated. However, water and sediments together have rarely been explored. In this study, Illumina high-throughput sequencing was performed to analyze microbes in 24 water and sediment samples from natural to anthropogenic sources and from headstream to downstream areas. These data were used to assess variability in microbial community structure and diversity along in the Fenghe River, China. The relationship between bacterial diversity and environmental parameters was statistically analyzed. An average of 1682 operational taxonomic units was obtained. Microbial diversity increased from the headstream to downstream and tended to be greater in sediment compared with water. The water samples near the headstream endured relatively low Shannon and Chao1 indices. These diversity indices and the number of observed species in the water and sediment samples increase downstream. The parameters also differ in the two river tributaries. Community structures shift based on the extent of nitrogen pollution variation in the sediment and water samples. The four most dominant genera in the water community were Escherichia, Acinetobacter, Comamonadaceae, and Pseudomonas. In the sediments, the most dominant genera were Stramenopiles, Flavobacterium, Pseudomonas, and Comamonadaceae. The number of ammonia-oxidizing archaea in the headstream water slightly differed from that in the sediment but varied considerably in the downstream sediments. Statistical analysis showed that community variation is correlated with changes in ammonia nitrogen, total nitrogen, and nitrate nitrogen. This study identified different microbial community structures in river water and sediments. Overall this study emphasized the need to elucidate spatial variations in bacterial diversity in water and sediments associated with physicochemical gradients and to show the effects of such variation on waterborne microbial community structures.


Assuntos
Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Rios/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Biodiversidade , China
20.
Water Sci Technol ; 74(7): 1539-1552, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27763334

RESUMO

River classification is a very useful tool for river management yet still a difficult task. This paper proposed a new decision classifier (DCF) to classify rivers for Chinese river management based on existing classification systems. Aimed at river function management, the DCF with the five-layers frame was developed on reach level in a spatially nested pattern that from top to bottom are natural province, basin, valley, reach, habitat and microhabitat. Five indexes (artificial degree, closeness, sinuosity, bed material texture, geomorphic units (GUs)) were selected and organized into the DCF according to the importance of the influence on river structure from macro to micro, large to small and top to bottom, because they represent main aspects of river structures and are easy to obtain. In addition, the closeness index is another good connector between valley level and reach level, and the GUs index links reach level to habitat level. The overall procedure to use DCF includes primary indoor classification and field validation. Remote sensing, geographical information system and global positioning system technologies were adopted in the process to dramatically reduce workload, especially fieldwork. Finally, the approach was applied to the Yongding river as a good example, and 17 river styles were identified.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , China , Conservação dos Recursos Naturais , Ecossistema , Sistemas de Informação Geográfica , Poluentes Químicos da Água , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA