Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(5): 13023-13038, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36121633

RESUMO

A one-step hydrothermal method for preparation of copper oxides with different valences using ascorbic acid as a reducing reagent was developed for environmental remediation. The results suggested that the notable degradation performance of CuO0 may be attributable to the abundant active sites, such as Cu or Cu-O, and was not significantly related to the Cu valence state. In contrast to direct degradation of pollutants by traditional superoxide radicals (O2•-), O2•- played an important role in the reduction of high-valence Cu ions (Cu(III)). In addition, a series of radical quenching, electron paramagnetic resonance (EPR), and electrochemical experiments validated the existence of direct electron transfer between methylene blue (MB) and PMS mediated by CuO0 and surface-bound radicals. The results suggested that the CuO0/PMS system may be less susceptible to diverse ions and natural organic matter other than dihydrogen phosphate anions. The mechanism of MB degradation under alkaline conditions was different from that under acidic conditions in that it was not reliant on radicals or charge transfer but direct oxidation by PMS. This study provides new insights into the heterogeneous processes involved in PMS activation by the copper oxides. Furthermore, this paper devotes to providing theoretical basis on pollutant removal via PMS activated by copper oxides and developing low-cost and high-efficiency catalysts.


Assuntos
Cobre , Azul de Metileno , Cobre/química , Peróxidos/química
2.
Environ Sci Pollut Res Int ; 29(50): 75597-75608, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35661306

RESUMO

Advanced oxidation processes (AOPs) are efficient methods for water purification. However, there are few studies on using peroxymonosulfate (PMS) to remove pollutants directly. In this study, about 76% of methylene blue (MB) was removed by PMS directly within 180 min through a non-radical pathway, verified by scavenging tests, electron paramagnetic resonance and kinetic calculations. Additionally, the effects of PMS dosage, MB concentration, temperature, initial pH and competitive anions were determined. High PMS dosage, temperature and pH promoted MB degradation (from 76 to 98%) while MB concentration showed no effect on MB removal. Besides, MB degradation followed pseudo-first-order kinetic with rate constants of 0.0082 to 0.3912 min-1. The second-order rate constant for PMS reaction with MB was 0.08 M-1 s-1 at pH 3-6, but increased dramatically to 4.68 M-1 s-1 at pH 10.50. Chlorine could be catalysed by PMS at high concentration Cl- and degradation efficiency reached 98% within 90 min. High concentration of bicarbonate accelerated MB removal due to the high pH value while humic acid showed a marginal effect on MB degradation. Furthermore, TOC removal rate of MB in the presence of chloride reached 45%, whereas PMS alone caused almost no mineralisation. This study provides new insights into pollutant removal and an additional strategy for water purification.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Bicarbonatos , Cloretos , Cloro , Substâncias Húmicas , Cinética , Oxirredução , Peróxidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA