Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133623, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301445

RESUMO

Approximately 80% of marine plastic waste originates from land-based sources and enters oceans through rivers. Hence, to create effective regulations, it is crucial to thoroughly examine the processes by which land-based plastic waste flows into marine environments. To this end, this review covers the complete journey of macro- and microplastics from their initial input into rivers to their ultimate release into oceans. Here, we also discuss the primary influencing factors and current popular research topics. Additionally, the principles, applicability, accuracy, uncertainty, and potential improvement of the standard methods used for flux estimation at each stage are outlined. Emission estimates of land-based macro- and microplastics are typically assessed using the emission factor approach, coefficient accounting approach, or material flow analysis. Accurately estimating mismanaged plastic waste is crucial for reducing uncertainty in the macroplastic emission inventory. In our review of the processes by which land-originating plastics enter rivers, we categorized them into two major types: point-source and diffuse-source pollution. Land surface hydrological models simulate transport from diffuse sources to rivers, necessitating further research. Riverine (micro)plastic flux to the ocean is often estimated using monitoring statistics and watershed hydrological models at the watershed scale; however, standardized monitoring methods have not yet been established. At the global scale, algorithms based on river datasets are often used, which require further improvements in river data selection and microplastic number-mass conversion factors. Furthermore, the article summarizes the accuracy and sources of uncertainty of various methods. Future research efforts should focus on quantifying and mitigating uncertainties in resultant projections. Overall, this review deepens our understanding of the processes by which land-based plastic waste enters the ocean and helps scholars efficiently select or improve relevant methods when studying land-ocean transport fluxes.

2.
Environ Pollut ; 357: 124465, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942280

RESUMO

The microbial community colonized on microplastics (MPs), known as the 'plastisphere', has attracted extensive concern owing to its environmental implications. Coastal salt marshes, which are crucial ecological assets, are considered sinks for MPs. Despite their strong spatial heterogeneity, there is limited information on plastisphere across diverse environments in coastal salt marshes. Herein, a 1-year field experiment was conducted at three sites in the Yancheng salt marsh in China. This included two sites in the intertidal zone, bare flat (BF) and Spartina alterniflora vegetation area (SA), and one site in the supratidal zone, Phragmites australis vegetation area (PA). Petroleum-based MPs (polyethylene and expanded polystyrene) and bio-based MPs (polylactic acid and polybutylene succinate) were employed. The results revealed significant differences in bacterial community composition between the plastisphere and sediment at all three sites examined, and the species enriched in the plastisphere exhibited location-specific characteristics. Overall, the largest difference was observed at the SA site, whereas the smallest difference was observed at the BF site. Furthermore, the MP polymer types influenced the composition of the bacterial communities in the plastisphere, also exhibiting location-specific characteristics, with the most pronounced impact observed at the PA site and the least at the BF site. The polybutylene succinate plastisphere bacterial communities at the SA and PA sites were quite different from the plastispheres from the other three MP polymer types. Co-occurrence network analyses suggested that the bacterial community network in the BF plastisphere exhibited the highest complexity, whereas the network in the SA plastisphere showed relatively sparse interactions. Null model analyses underscored the predominant role of deterministic processes in shaping the assembly of plastisphere bacterial communities across all three sites, with a more pronounced influence observed in the intertidal zone than in the supratidal zone. This study enriches our understanding of the plastisphere in coastal salt marshes.


Assuntos
Bactérias , Microbiota , Áreas Alagadas , Bactérias/classificação , Bactérias/isolamento & purificação , China , Microplásticos , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
J Hazard Mater ; 466: 133544, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244455

RESUMO

The Yangtze River is an important global channel for plastics and microplastics (MPs) to enter the sea. However, the existing research on MPs in the Yangtze River has primarily focused on the mainstream region, without regarding the occurrence, spatial distribution, and ecological risks associated with tributaries, as well as their relationship with the mainstream. To address this knowledge gap, we conducted a large-scale catchment-wide investigation of the surface water in the Yangtze River, encompassing MPs (48 µm-5 mm) of the mainstream and 15 important tributaries. Tributaries and upstream regions exhibited relatively higher levels of MPs compared with the mainstream and different sections of the river. The distribution of MPs is primarily influenced by the emission of arable land and the pH of water. Notably, the upstream tributary areas demonstrated the highest ecological risks associated with MPs. Further analysis highlighted that the tributaries accounted for a contribution ranging from 16% to 67% in quantity and from 14% to 90% in mass of the microplastics observed in the mainstream. Our results suggest that the pollution of tributaries and their associated ecological risk migration must be effectively regulated.

4.
Sci Total Environ ; 918: 170554, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309341

RESUMO

The transport of microplastics (MPs) is susceptible to being influenced by catchment hydrology; however, there is a notable lack of research on their retention and responses to flood events in estuarine sedimentary records. Herein, we collected two cores in the Yangtze Estuary to explore their microplastic pollution, influencing factors and linkage to flood events. MP abundance exhibited a decreasing trend from the top to the bottom in both cores. Both plastic production and sediment mean grain size showed a significant positive correlation with MP abundance. The sedimentary record displayed a marked surge in MP abundance during the extreme flood period, suggesting a direct influence of flooding on MP deposition. The resuspension of upstream MPs and erosion of land-based MPs by heavy rain might be responsible for this increase. Furthermore, our study identified significant periodicities in MP abundance, closely aligned with the hydrological patterns of the Yangtze River. This study highlights the role of floods in fluvial MP distribution and proposes MPs as a proxy of extreme floods from the 20th century in estuarine environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA